Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA; Joint CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA.
Cell. 2022 Feb 17;185(4):690-711.e45. doi: 10.1016/j.cell.2021.12.045. Epub 2022 Feb 1.
Single-cell (sc)RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo (https://github.com/aristoteleo/dynamo-release), which infers absolute RNA velocity, reconstructs continuous vector fields that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo's power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1-GATA1 circuit. Leveraging the least-action-path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo, thus, represents an important step in advancing quantitative and predictive theories of cell-state transitions.
单细胞 (sc)RNA-seq 与 RNA 速度和代谢标记一起,以前所未有的分辨率揭示细胞状态和转变。然而,要充分利用这些数据,需要能够揭示控制调节功能的动力学模型。在这里,我们引入了一个分析框架 dynamo(https://github.com/aristoteleo/dynamo-release),它可以推断绝对 RNA 速度,重建预测细胞命运的连续向量场,利用微分几何提取潜在的调控,并最终预测最优的重编程路径和扰动结果。我们强调了 dynamo 克服传统基于剪接的 RNA 速度分析的基本限制的能力,从而能够在代谢标记的人类造血 scRNA-seq 数据集上进行准确的速度估计。此外,微分几何分析揭示了驱动早期巨核细胞出现的机制,并阐明了 PU.1-GATA1 电路内的不对称调控。利用最小作用量路径方法,dynamo 准确预测了许多造血转变的驱动因素。最后,在模拟扰动中预测了基因扰动引起的细胞命运转移。因此,dynamo 代表了推进细胞状态转变的定量和预测理论的重要一步。