文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

GraphVelo能够准确推断单细胞的多模态速度和分子机制。

GraphVelo allows for accurate inference of multimodal velocities and molecular mechanisms for single cells.

作者信息

Chen Yuhao, Zhang Yan, Gan Jiaqi, Ni Ke, Chen Ming, Bahar Ivet, Xing Jianhua

机构信息

Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Nat Commun. 2025 Aug 22;16(1):7831. doi: 10.1038/s41467-025-62784-w.


DOI:10.1038/s41467-025-62784-w
PMID:40847023
Abstract

RNA velocities and generalizations emerge as powerful approaches for extracting time-resolved information from high-throughput snapshot single-cell data. Yet, several inherent limitations restrict applying the approaches to genes not suitable for RNA velocity inference due to complex transcriptional dynamics, low expression, or lacking splicing dynamics, or data of non-transcriptomic modality. Here, we present GraphVelo, a graph-based machine learning procedure that uses as input the RNA velocities inferred from existing methods and infers velocity vectors lying in the tangent space of the low-dimensional manifold formed by the single cell data. GraphVelo preserves vector magnitude and direction information during transformations across different data representations. Tests on synthetic and experimental single-cell data, including viral-host interactome, multi-omics, and spatial genomics datasets demonstrate that GraphVelo, together with downstream generalized dynamo analyses, extends RNA velocities to multi-modal data and reveals quantitative nonlinear regulation relations between genes, virus, and host cells, and different layers of gene regulation.

摘要

RNA速度及相关推广方法成为从高通量快照单细胞数据中提取时间分辨信息的有力手段。然而,由于复杂的转录动力学、低表达、缺乏剪接动力学或非转录组学模态数据等原因,一些固有局限性限制了这些方法应用于不适合RNA速度推断的基因。在此,我们提出了GraphVelo,这是一种基于图的机器学习方法,它将现有方法推断出的RNA速度作为输入,并推断位于由单细胞数据形成的低维流形切空间中的速度向量。GraphVelo在跨不同数据表示的转换过程中保留向量大小和方向信息。对合成和实验单细胞数据的测试,包括病毒-宿主相互作用组、多组学和空间基因组学数据集,表明GraphVelo与下游广义动力学分析一起,将RNA速度扩展到多模态数据,并揭示了基因、病毒和宿主细胞之间以及不同基因调控层之间的定量非线性调控关系。

相似文献

[1]
GraphVelo allows for accurate inference of multimodal velocities and molecular mechanisms for single cells.

Nat Commun. 2025-8-22

[2]
GraphVelo allows for accurate inference of multimodal velocities and molecular mechanisms for single cells.

bioRxiv. 2025-1-11

[3]
GraphVelo allows for accurate inference of multimodal omics velocities and molecular mechanisms for single cells.

Res Sq. 2025-1-15

[4]
sCIN: a contrastive learning framework for single-cell multi-omics data integration.

Brief Bioinform. 2025-7-2

[5]
Graph neural networks for single-cell omics data: a review of approaches and applications.

Brief Bioinform. 2025-3-4

[6]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[7]
Short-Term Memory Impairment

2025-1

[8]
Multi-omics single-cell data alignment and integration with enhanced contrastive learning and differential attention mechanism.

Bioinformatics. 2025-8-2

[9]
Multimodal zero-shot learning of previously unseen epitranscriptomes from RNA-seq data.

Brief Bioinform. 2025-7-2

[10]
Top-down machine learning approach for high-throughput single-molecule analysis.

Elife. 2020-4-8

引用本文的文献

[1]
Quantifying Landscape and Flux from Single-Cell Omics: Unraveling the Physical Mechanisms of Cell Function.

JACS Au. 2025-8-7

本文引用的文献

[1]
Spatiotemporal modeling of molecular holograms.

Cell. 2024-12-26

[2]
Statistical inference with a manifold-constrained RNA velocity model uncovers cell cycle speed modulations.

Nat Methods. 2024-12

[3]
CellRank 2: unified fate mapping in multiview single-cell data.

Nat Methods. 2024-7

[4]
Dissection and integration of bursty transcriptional dynamics for complex systems.

Proc Natl Acad Sci U S A. 2024-4-30

[5]
Single-cell multi-ome regression models identify functional and disease-associated enhancers and enable chromatin potential analysis.

Nat Genet. 2024-4

[6]
Human cytomegalovirus exploits STING signaling and counteracts IFN/ISG induction to facilitate infection of dendritic cells.

Nat Commun. 2024-2-26

[7]
TFvelo: gene regulation inspired RNA velocity estimation.

Nat Commun. 2024-2-15

[8]
Detection of new pioneer transcription factors as cell-type-specific nucleosome binders.

Elife. 2024-1-31

[9]
DeepVelo: deep learning extends RNA velocity to multi-lineage systems with cell-specific kinetics.

Genome Biol. 2024-1-19

[10]
A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain.

Nature. 2023-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索