Suppr超能文献

基于等高线和人工神经网络的城市区域车辆交通噪声建模。

Vehicular traffic noise modelling of urban area-a contouring and artificial neural network based approach.

机构信息

Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India.

Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India.

出版信息

Environ Sci Pollut Res Int. 2022 Jun;29(26):39948-39972. doi: 10.1007/s11356-021-17577-1. Epub 2022 Feb 3.

Abstract

Road traffic vehicular noise is one of the main sources of environmental pollution in urban areas of India. Also, steadily increasing urbanization, industrialization, infrastructures around city condition causes health risks among the urban populations. In this study, we have explored noise descriptors (L, L, L, LNI, TNI, NC), contour plotting and find the suitability of artificial neural networks (ANN) for the prediction of traffic noise all around the Dhanbad township in 15 monitoring stations. In order to develop the prediction model, measuring noise levels of five different hours, speed of vehicles, and traffic volume in every monitoring point have been studied and analyzed. Traffic volume, percent of heavy vehicles, speed, traffic flow, road gradient, pavement, road side carriageway distance factors were taken as input parameter, whereas L as output parameter for formation of neural network architecture. As traffic flow is heterogenous which mainly contains 59%, two wheelers and different vehicle specifications with varying speeds also affect driving and honking behavior which constantly changing noise characteristics. From radial noise diagrams shown that average noise levels of all the stations beyond permissible limit and the highest noise levels were found at the speed of 50-55 km/h in both peak and non-peak hours. Noise descriptors clearly indicate high annoyance level in the study area. Artificial neural network with 7-7-5 formation has been developed and found as optimum due to its sum of square and overall relative error 0.858 and .029 in training and 0.458 and 0.862 in testing phase respectively. Comparative analysis between observed and predicted noise level shows very less deviation up to ± 0.6 dB(A) and the R linear values are more than 0.9 in all five noise hours indicating the accuracy of model. Also, it can be concluded that ANN approach is much superior in prediction of traffic noise level to any other statistical method.

摘要

道路交通车辆噪声是印度城市地区主要的环境污染源之一。此外,城市化、工业化和城市周边基础设施的稳步发展给城市人口带来了健康风险。在这项研究中,我们探索了噪声描述符(L、L、L、LNI、TNI、NC)、等高线绘图,并发现人工神经网络(ANN)非常适合预测丹巴德镇周围 15 个监测站的交通噪声。为了开发预测模型,我们研究和分析了每个监测点的五个不同小时的噪声水平、车辆速度和交通量。交通量、重型车辆比例、速度、交通流量、道路坡度、路面、道路路边车道距离等因素被视为输入参数,而 L 则作为输出参数,用于形成神经网络架构。由于交通流量具有异质性,主要包含 59%的两轮车和不同车辆规格,速度也不同,这也会影响驾驶和鸣笛行为,从而不断改变噪声特性。从辐射噪声图可以看出,所有站点的平均噪声水平都超过了允许限值,在高峰和非高峰时段,速度在 50-55km/h 时噪声水平最高。噪声描述符清楚地表明了研究区域的高烦恼水平。我们开发了具有 7-7-5 结构的人工神经网络,并发现由于其平方和总和以及训练阶段的总相对误差为 0.858 和 0.029,测试阶段为 0.458 和 0.862,因此是最佳选择。观察到的和预测的噪声水平之间的比较分析表明,偏差非常小,在±0.6dB(A)以内,所有五个噪声小时的 R 线性值都大于 0.9,这表明了模型的准确性。此外,还可以得出结论,与任何其他统计方法相比,ANN 方法在交通噪声水平预测方面具有很大的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验