Suppr超能文献

药物遗传学在降低癌症患者药物相关毒性中的价值。

The Value of Pharmacogenetics to Reduce Drug-Related Toxicity in Cancer Patients.

机构信息

Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.

出版信息

Mol Diagn Ther. 2022 Mar;26(2):137-151. doi: 10.1007/s40291-021-00575-x. Epub 2022 Feb 3.

Abstract

Many anticancer drugs cause adverse drug reactions (ADRs) that negatively impact safety and reduce quality of life. The typical narrow therapeutic range and exposure-response relationships described for anticancer drugs make precision dosing critical to ensure safe and effective drug exposure. Germline mutations in pharmacogenes contribute to inter-patient variability in pharmacokinetics and pharmacodynamics of anticancer drugs. Patients carrying reduced-activity or loss-of-function alleles are at increased risk for ADRs. Pretreatment genotyping offers a proactive approach to identify these high-risk patients, administer an individualized dose, and minimize the risk of ADRs. In the field of oncology, the most well-studied gene-drug pairs for which pharmacogenetic dosing recommendations have been published to improve safety are DPYD-fluoropyrimidines, TPMT/NUDT15-thiopurines, and UGT1A1-irinotecan. Despite the presence of these guidelines, the scientific evidence showing the benefits of pharmacogenetic testing (e.g., improved safety and cost-effectiveness) and the development of efficient multi-gene genotyping panels, routine pretreatment testing for these gene-drug pairs has not been implemented widely in the clinic. Important considerations required for widespread clinical implementation include pharmacogenetic education of physicians, availability or allocation of institutional resources to build an efficient clinical infrastructure, international standardization of guidelines, uniform adoption of guidelines by regulatory agencies leading to genotyping requirements in drug labels, and development of cohesive reimbursement policies for pretreatment genotyping. Without clinical implementation, the potential of pharmacogenetics to improve patient safety remains unfulfilled.

摘要

许多抗癌药物会引起不良反应 (ADR),从而对安全性产生负面影响,并降低生活质量。抗癌药物典型的治疗窗较窄和暴露-反应关系,使得精确给药对于确保安全有效的药物暴露至关重要。药物基因的种系突变导致抗癌药物药代动力学和药效动力学的个体间变异性。携带低活性或功能丧失等位基因的患者发生不良反应的风险增加。预处理基因分型提供了一种主动方法来识别这些高风险患者,给予个体化剂量,并最大程度降低不良反应的风险。在肿瘤学领域,最成熟的基因-药物对是已发表药物遗传剂量建议以提高安全性的基因-药物对,包括 DPYD-氟嘧啶、TPMT/NUDT15-硫嘌呤和 UGT1A1-伊立替康。尽管存在这些指南,但科学证据表明药物遗传检测的益处(例如,提高安全性和成本效益)以及高效多基因基因分型面板的开发,这些基因-药物对的常规预处理检测尚未在临床上广泛实施。广泛临床实施所需的重要考虑因素包括医生的药物遗传教育、建立高效临床基础设施的机构资源的可用性或分配、指南的国际标准化、监管机构对指南的统一采用导致药物标签中的基因分型要求,以及预处理基因分型的协调报销政策的制定。如果没有临床实施,药物遗传学改善患者安全性的潜力仍未实现。

相似文献

1
The Value of Pharmacogenetics to Reduce Drug-Related Toxicity in Cancer Patients.
Mol Diagn Ther. 2022 Mar;26(2):137-151. doi: 10.1007/s40291-021-00575-x. Epub 2022 Feb 3.
2
Pharmacogenetic testing in oncology: a Brazilian perspective.
Clinics (Sao Paulo). 2018 Oct 11;73(suppl 1):e565s. doi: 10.6061/clinics/2018/e565s.
3
Clinically actionable genotypes for anticancer prescribing among >1500 patients with pharmacogenomic testing.
Cancer. 2022 Apr 15;128(8):1649-1657. doi: 10.1002/cncr.34104. Epub 2022 Jan 28.
5
Pre-therapeutic UGT1A1 genotyping to reduce the risk of irinotecan-induced severe toxicity: Ready for prime time.
Eur J Cancer. 2020 Dec;141:9-20. doi: 10.1016/j.ejca.2020.09.007. Epub 2020 Oct 23.
7
Analyzing the clinical actionability of germline pharmacogenomic findings in oncology.
Cancer. 2018 Jul 15;124(14):3052-3065. doi: 10.1002/cncr.31382. Epub 2018 May 9.

引用本文的文献

1
Patient and physician preferences for cancer panel testing in Japan: a best-worst scaling study.
BMJ Open. 2025 Aug 26;15(8):e097620. doi: 10.1136/bmjopen-2024-097620.
3
Enhancing cancer therapy: advanced nanovehicle delivery systems for oridonin.
Front Pharmacol. 2024 Dec 3;15:1476739. doi: 10.3389/fphar.2024.1476739. eCollection 2024.
5
Pharmacogenetic Practice of Anticancer Drugs: Multiple Approaches for an Accurate and Comprehensive Genotyping.
Pharmgenomics Pers Med. 2023 Jul 27;16:739-746. doi: 10.2147/PGPM.S412430. eCollection 2023.

本文引用的文献

2
Key Considerations for Selecting a Genomic Decision Support Platform for Implementing Pharmacogenomics.
Clin Pharmacol Ther. 2021 Sep;110(3):555-558. doi: 10.1002/cpt.2328. Epub 2021 Jul 13.
3
Pharmacogenomics education, research and clinical implementation in the state of Minnesota.
Pharmacogenomics. 2021 Jul;22(11):681-691. doi: 10.2217/pgs-2021-0058. Epub 2021 Jun 17.
4
Pharmacogenetic-Guided Treatment of Depression: Real-World Clinical Applications, Challenges, and Perspectives.
Clin Pharmacol Ther. 2021 Sep;110(3):573-581. doi: 10.1002/cpt.2315. Epub 2021 Jun 25.
5
Near Miss or Standard of Care? Screening for Cancer Patients Receiving Fluorouracil.
Curr Oncol. 2020 Dec 18;28(1):94-97. doi: 10.3390/curroncol28010012.
7
Expanding evidence leads to new pharmacogenomics payer coverage.
Genet Med. 2021 May;23(5):830-832. doi: 10.1038/s41436-021-01117-w. Epub 2021 Feb 24.
8
Rates of genetic testing in patients prescribed drugs with pharmacogenomic information in FDA-approved labeling.
Pharmacogenomics J. 2021 Jun;21(3):318-325. doi: 10.1038/s41397-021-00211-1. Epub 2021 Feb 15.
9
Pharmacogenetics in developing countries and low resource environments.
Hum Genet. 2022 Jun;141(6):1159-1164. doi: 10.1007/s00439-021-02260-9. Epub 2021 Feb 9.
10
Preemptive screening of DPYD as part of clinical practice: high prevalence of a novel exon 4 deletion in the Finnish population.
Cancer Chemother Pharmacol. 2021 May;87(5):657-663. doi: 10.1007/s00280-021-04236-y. Epub 2021 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验