Suppr超能文献

基于促卵泡生成素预测无精子症概率的算法:设计与多机构外部验证

Algorithms for Predicting the Probability of Azoospermia from Follicle Stimulating Hormone: Design and Multi-Institutional External Validation.

作者信息

Tradewell Michael B, Cazzaniga Walter, Pagani Rodrigo L, Reddy Rohit, Boeri Luca, Kresch Eliyahu, Morgantini Luca A, Ibrahim Emad, Niederberger Craig, Salonia Andrea, Ramasamy Ranjith

机构信息

Department of Urology, Jackson Health System, University of Miami Miller School of Medicine, Miami, FL, USA.

Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milano, Italy.

出版信息

World J Mens Health. 2022 Oct;40(4):600-607. doi: 10.5534/wjmh.210138. Epub 2022 Jan 27.

Abstract

PURPOSE

To predict the probability of azoospermia without a semen analysis in men presenting with infertility by developing an azoospermia prediction model.

MATERIALS AND METHODS

Two predictive algorithms were generated, one with follicle stimulating hormone (FSH) as the only input and another logistic regression (LR) model with additional clinical inputs of age, luteinizing hormone, total testosterone, and bilateral testis volume. Men presenting between 01/2016 and 03/2020 with semen analyses, testicular ochiodemetry, and serum gonadotropin measurements collected within 120 days were included. An azoospermia prediction model was developed with multi-institutional two-fold external validation from tertiary urologic infertility clinics in Chicago, Miami, and Milan.

RESULTS

Total 3,497 participants were included (n=Miami 946, Milan 1,955, Chicago 596). Incidence of azoospermia in Miami, Milan, and Chicago was 13.8%, 23.8%, and 32.0%, respectively. Predictive algorithms were generated with Miami data. On Milan external validation, the LR and quadratic FSH models both demonstrated good discrimination with areas under the receiver-operating-characteristic (ROC) curve (AUC) of 0.79 and 0.78, respectively. Data from Chicago performed with AUCs of 0.71 for the FSH only model and 0.72 for LR. Correlation between the quadratic FSH model and LR model was 0.95 with Milan and 0.92 with Chicago data.

CONCLUSIONS

We present and validate algorithms to predict the probability of azoospermia. The ability to predict the probability of azoospermia without a semen analysis is useful when there are logistical hurdles in obtaining a semen analysis or for reevaluation prior to surgical sperm extraction.

摘要

目的

通过开发无精子症预测模型,预测不育男性在未进行精液分析情况下出现无精子症的概率。

材料与方法

生成了两种预测算法,一种以促卵泡生成素(FSH)作为唯一输入,另一种逻辑回归(LR)模型则额外纳入了年龄、促黄体生成素、总睾酮和双侧睾丸体积等临床输入变量。纳入了2016年1月至2020年3月期间进行精液分析、睾丸容积测量以及在120天内采集血清促性腺激素测量值的男性。通过芝加哥、迈阿密和米兰的三级泌尿外科不育诊所进行多机构双重外部验证,开发了无精子症预测模型。

结果

共纳入3497名参与者(迈阿密946例,米兰1955例,芝加哥596例)。迈阿密、米兰和芝加哥的无精子症发生率分别为13.8%、23.8%和32.0%。利用迈阿密的数据生成了预测算法。在米兰的外部验证中,LR模型和二次FSH模型在受试者工作特征(ROC)曲线下面积(AUC)分别为0.79和0.78,均显示出良好的区分度。芝加哥的数据中,仅FSH模型的AUC为0.71,LR模型的AUC为0.72。二次FSH模型与LR模型在米兰数据中的相关性为0.95,在芝加哥数据中的相关性为0.92。

结论

我们提出并验证了预测无精子症概率算法。在获取精液分析存在后勤障碍或在手术取精前进行重新评估时,无需精液分析就能预测无精子症概率的能力很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c7/9482862/ec1208ff4b80/wjmh-40-600-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验