Li Han-Fei, Oganov Artem R, Cui Haixu, Zhou Xiang-Feng, Dong Xiao, Wang Hui-Tian
Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China.
Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.
Phys Rev Lett. 2022 Jan 21;128(3):035703. doi: 10.1103/PhysRevLett.128.035703.
The origin of water on the Earth is a long-standing mystery, requiring a comprehensive search for hydrous compounds, stable at conditions of the deep Earth and made of Earth-abundant elements. Previous studies usually focused on the current range of pressure-temperature conditions in the Earth's mantle and ignored a possible difference in the past, such as the stage of the core-mantle separation. Here, using ab initio evolutionary structure prediction, we find that only two magnesium hydrosilicate phases are stable at megabar pressures, α-Mg_{2}SiO_{5}H_{2} and β-Mg_{2}SiO_{5}H_{2}, stable at 262-338 GPa and >338 GPa, respectively (all these pressures now lie within the Earth's iron core). Both are superionic conductors with quasi-one-dimensional proton diffusion at relevant conditions. In the first 30 million years of Earth's history, before the Earth's core was formed, these must have existed in the Earth, hosting much of Earth's water. As dense iron alloys segregated to form the Earth's core, Mg_{2}SiO_{5}H_{2} phases decomposed and released water. Thus, now-extinct Mg_{2}SiO_{5}H_{2} phases have likely contributed in a major way to the evolution of our planet.
地球上水的起源是一个长期存在的谜团,需要全面寻找在地球深部条件下稳定且由地球上丰富元素构成的含水化合物。以往的研究通常聚焦于地球地幔当前的压力 - 温度条件范围,而忽略了过去可能存在的差异,比如地核 - 地幔分离阶段。在此,我们利用第一性原理进化结构预测发现,在兆巴压力下只有两种镁氢硅酸盐相是稳定的,即α - Mg₂SiO₅H₂和β - Mg₂SiO₅H₂,分别在262 - 338吉帕和大于338吉帕的压力下稳定(所有这些压力现在都处于地球的铁核范围内)。在相关条件下,二者都是具有准一维质子扩散的超离子导体。在地球历史的最初3000万年,即地球地核形成之前,这些物质肯定存在于地球上,承载了地球上的大部分水。随着致密铁合金分离形成地球的地核,Mg₂SiO₅H₂相分解并释放出水。因此,现已灭绝的Mg₂SiO₅H₂相很可能对我们星球的演化起到了主要作用。