Suppr超能文献

机器学习方法预测降主动脉和胸腹主动脉瘤并发症。

A machine learning approach for predicting complications in descending and thoracoabdominal aortic aneurysms.

机构信息

Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Conn; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, Calif.

Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Conn.

出版信息

J Thorac Cardiovasc Surg. 2023 Oct;166(4):1011-1020.e3. doi: 10.1016/j.jtcvs.2021.12.045. Epub 2022 Jan 11.

Abstract

OBJECTIVE

To use machine learning to predict rupture, dissection, and all-cause mortality for patients with descending and thoracoabdominal aortic aneurysms in an effort to improve on diameter-based surgical intervention criteria.

METHODS

Retrospective data from 1083 patients with descending aortic diameters 3.0 cm or greater were collected, with a mean follow-up time of 3.52 years and an average descending diameter of 4.13 cm. Six machine learning classifiers were trained using 44 variables to predict the occurrence of dissection, rupture, or all-cause mortality within 1, 2, or 5 years of initial patient encounter for a total of 54 (6 × 3 × 3) separate classifiers. Classifier performance was measured using area under the receiver operator curve.

RESULTS

Machine learning models achieved area under the receiver operator curves of 0.842 to 0.872 when predicting type B dissection, 0.847 to 0.856 when predicting type B dissection or rupture, and 0.820 to 0.845 when predicting type B dissection, rupture, or all-cause mortality. All models consistently outperformed descending aortic diameter across all end points (area under the receiver operator curve = 0.713-0.733). Feature importance inspection showed that other features beyond aortic diameter, such as a history of myocardial infarction, hypertension, and patient sex, play an important role in improving risk prediction.

CONCLUSIONS

This study provides surgeons with a more accurate, machine learning-based, risk-stratification metric to predict complications for patients with descending aortic aneurysms.

摘要

目的

利用机器学习预测降主动脉和胸腹主动脉瘤患者的破裂、夹层和全因死亡率,以改进基于直径的手术干预标准。

方法

收集了 1083 名降主动脉直径大于或等于 3.0cm 的患者的回顾性数据,平均随访时间为 3.52 年,平均降主动脉直径为 4.13cm。使用 44 个变量训练了 6 个机器学习分类器,以预测患者初次就诊后 1、2 或 5 年内发生夹层、破裂或全因死亡率,共产生了 54 个(6×3×3)独立的分类器。使用接收者操作特征曲线下面积来衡量分类器的性能。

结果

当预测 B 型夹层时,机器学习模型的接收者操作特征曲线下面积为 0.842 至 0.872;当预测 B 型夹层或破裂时,为 0.847 至 0.856;当预测 B 型夹层、破裂或全因死亡率时,为 0.820 至 0.845。所有模型在所有终点上均优于降主动脉直径(接收者操作特征曲线下面积为 0.713-0.733)。特征重要性检查表明,除主动脉直径以外的其他特征,如心肌梗死、高血压和患者性别病史,在改善风险预测方面发挥着重要作用。

结论

本研究为外科医生提供了一种更准确的、基于机器学习的降主动脉瘤患者并发症风险分层指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验