Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Conn; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, Calif.
Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Conn.
J Thorac Cardiovasc Surg. 2023 Oct;166(4):1011-1020.e3. doi: 10.1016/j.jtcvs.2021.12.045. Epub 2022 Jan 11.
To use machine learning to predict rupture, dissection, and all-cause mortality for patients with descending and thoracoabdominal aortic aneurysms in an effort to improve on diameter-based surgical intervention criteria.
Retrospective data from 1083 patients with descending aortic diameters 3.0 cm or greater were collected, with a mean follow-up time of 3.52 years and an average descending diameter of 4.13 cm. Six machine learning classifiers were trained using 44 variables to predict the occurrence of dissection, rupture, or all-cause mortality within 1, 2, or 5 years of initial patient encounter for a total of 54 (6 × 3 × 3) separate classifiers. Classifier performance was measured using area under the receiver operator curve.
Machine learning models achieved area under the receiver operator curves of 0.842 to 0.872 when predicting type B dissection, 0.847 to 0.856 when predicting type B dissection or rupture, and 0.820 to 0.845 when predicting type B dissection, rupture, or all-cause mortality. All models consistently outperformed descending aortic diameter across all end points (area under the receiver operator curve = 0.713-0.733). Feature importance inspection showed that other features beyond aortic diameter, such as a history of myocardial infarction, hypertension, and patient sex, play an important role in improving risk prediction.
This study provides surgeons with a more accurate, machine learning-based, risk-stratification metric to predict complications for patients with descending aortic aneurysms.
利用机器学习预测降主动脉和胸腹主动脉瘤患者的破裂、夹层和全因死亡率,以改进基于直径的手术干预标准。
收集了 1083 名降主动脉直径大于或等于 3.0cm 的患者的回顾性数据,平均随访时间为 3.52 年,平均降主动脉直径为 4.13cm。使用 44 个变量训练了 6 个机器学习分类器,以预测患者初次就诊后 1、2 或 5 年内发生夹层、破裂或全因死亡率,共产生了 54 个(6×3×3)独立的分类器。使用接收者操作特征曲线下面积来衡量分类器的性能。
当预测 B 型夹层时,机器学习模型的接收者操作特征曲线下面积为 0.842 至 0.872;当预测 B 型夹层或破裂时,为 0.847 至 0.856;当预测 B 型夹层、破裂或全因死亡率时,为 0.820 至 0.845。所有模型在所有终点上均优于降主动脉直径(接收者操作特征曲线下面积为 0.713-0.733)。特征重要性检查表明,除主动脉直径以外的其他特征,如心肌梗死、高血压和患者性别病史,在改善风险预测方面发挥着重要作用。
本研究为外科医生提供了一种更准确的、基于机器学习的降主动脉瘤患者并发症风险分层指标。