Division of Applied Mathematics, Brown University, Providence, RI, USA.
Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
J R Soc Interface. 2022 Aug;19(193):20220410. doi: 10.1098/rsif.2022.0410. Epub 2022 Aug 31.
Thoracic aortic aneurysm (TAA) is a localized dilatation of the aorta that can lead to life-threatening dissection or rupture. assessments of TAA progression are largely limited to measurements of aneurysm size and growth rate. There is promise, however, that computational modelling of the evolving biomechanics of the aorta could predict future geometry and properties from initiating mechanobiological insults. We present an integrated framework to train a deep operator network (DeepONet)-based surrogate model to identify TAA contributing factors using synthetic finite-element-based datasets. For training, we employ a constrained mixture model of aortic growth and remodelling to generate maps of local aortic dilatation and distensibility for multiple TAA risk factors. We evaluate the performance of the surrogate model for insult distributions varying from fusiform (analytically defined) to complex (randomly generated). We propose two frameworks, one trained on sparse information and one on full-field greyscale images, to gain insight into a preferred neural operator-based approach. We show that this continuous learning approach can predict the patient-specific insult profile associated with any given dilatation and distensibility map with high accuracy, particularly when based on full-field images. Our findings demonstrate the feasibility of applying DeepONet to support transfer learning of patient-specific inputs to predict TAA progression.
胸主动脉瘤(TAA)是主动脉的局部扩张,可导致危及生命的夹层或破裂。TAA 进展的评估主要局限于测量动脉瘤的大小和生长速度。然而,通过对主动脉不断演变的生物力学进行计算建模,有可能从引发的机械生物学损伤来预测未来的几何形状和特性。我们提出了一个集成框架,使用基于深度算子网络(DeepONet)的代理模型来识别 TAA 的影响因素,该模型使用基于合成有限元的数据集进行训练。在训练过程中,我们采用了主动脉生长和重塑的约束混合模型,为多种 TAA 风险因素生成局部主动脉扩张和可扩张性的图谱。我们评估了代理模型在从梭形(分析定义)到复杂(随机生成)的损伤分布下的性能。我们提出了两种框架,一种是基于稀疏信息训练的,另一种是基于全场灰度图像训练的,以深入了解基于神经算子的首选方法。我们表明,这种连续学习方法可以高精度地预测与任何给定扩张和可扩张性图谱相关的特定于患者的损伤情况,特别是基于全场图像时。我们的研究结果表明,应用 DeepONet 来支持基于特定于患者的输入的转移学习以预测 TAA 进展是可行的。