Suppr超能文献

DNA 复制调控蛋白 RADX 的寡聚化对于维持复制叉稳定性至关重要。

Oligomerization of DNA replication regulatory protein RADX is essential to maintain replication fork stability.

机构信息

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

出版信息

J Biol Chem. 2022 Mar;298(3):101672. doi: 10.1016/j.jbc.2022.101672. Epub 2022 Feb 2.

Abstract

Genome integrity requires complete and accurate DNA replication once per cell division cycle. Replication stress poses obstacles to this process that must be overcome to prevent replication fork collapse. An important regulator of replication fork stability is the RAD51 protein, which promotes replication fork reversal and protects nascent DNA strands from nuclease-mediated degradation. Many regulatory proteins control these RAD51 activities, including RADX, which binds both ssDNA and RAD51 at replication forks to ensure that fork reversal is confined to stalled forks. Many ssDNA-binding proteins function as hetero- or homo-oligomers. In this study, we addressed whether this is also the case for RADX. Using biochemical and genetic approaches, we found that RADX acts as a homo-oligomer to control replication fork stability. RADX oligomerizes using at least two different interaction surfaces, including one mapped to a C-terminal region. We demonstrate that mutations in this region prevent oligomerization and prevent RADX function in cells, and that addition of a heterologous dimerization domain to the oligomerization mutants restored their ability to regulate replication. Taken together, our results demonstrate that like many ssDNA-binding proteins, oligomerization is essential for RADX-mediated regulation of genome stability.

摘要

基因组完整性要求在细胞分裂周期中每次都进行完整和准确的 DNA 复制。复制压力会给这一过程带来障碍,必须克服这些障碍以防止复制叉崩溃。RAD51 蛋白是复制叉稳定性的重要调节因子,它促进复制叉反转,并保护新生 DNA 链免受核酸酶介导的降解。许多调节蛋白控制这些 RAD51 活性,包括 RADX,它在复制叉处结合 ssDNA 和 RAD51,以确保叉反转仅限于停滞的叉。许多 ssDNA 结合蛋白作为异源或同源寡聚体发挥作用。在这项研究中,我们研究了 RADX 是否也是如此。我们使用生化和遗传方法发现,RADX 作为同源寡聚体发挥作用以控制复制叉稳定性。RADX 至少使用两个不同的相互作用表面进行寡聚化,包括一个映射到 C 末端区域的表面。我们证明该区域的突变会阻止寡聚化并阻止 RADX 在细胞中的功能,并且将异源二聚化结构域添加到寡聚化突变体中恢复了它们调节复制的能力。总之,我们的结果表明,与许多 ssDNA 结合蛋白一样,寡聚化对于 RADX 介导的基因组稳定性调节至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04fe/8902620/b590e30821f0/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验