Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA.
Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA.
J Biol Chem. 2021 Nov;297(5):101301. doi: 10.1016/j.jbc.2021.101301. Epub 2021 Oct 11.
Lamin A/C provides a nuclear scaffold for compartmentalization of genome function that is important for genome integrity. Lamin A/C dysfunction is associated with cancer, aging, and degenerative diseases. The mechanisms whereby lamin A/C regulates genome stability remain poorly understood. We demonstrate a crucial role for lamin A/C in DNA replication. Lamin A/C binds to nascent DNA, especially during replication stress (RS), ensuring the recruitment of replication fork protective factors RPA and RAD51. These ssDNA-binding proteins, considered the first and second responders to RS respectively, function in the stabilization, remodeling, and repair of the stalled fork to ensure proper restart and genome stability. Reduced recruitment of RPA and RAD51 upon lamin A/C depletion elicits replication fork instability (RFI) characterized by MRE11 nuclease-mediated degradation of nascent DNA, RS-induced DNA damage, and sensitivity to replication inhibitors. Importantly, unlike homologous recombination-deficient cells, RFI in lamin A/C-depleted cells is not linked to replication fork reversal. Thus, the point of entry of nucleases is not the reversed fork but regions of ssDNA generated during RS that are not protected by RPA and RAD51. Consistently, RFI in lamin A/C-depleted cells is rescued by exogenous overexpression of RPA or RAD51. These data unveil involvement of structural nuclear proteins in the protection of ssDNA from nucleases during RS by promoting recruitment of RPA and RAD51 to stalled forks. Supporting this model, we show physical interaction between RPA and lamin A/C. We suggest that RS is a major source of genomic instability in laminopathies and lamin A/C-deficient tumors.
核层蛋白 A/C 为基因组功能的区室化提供了核基质,这对于基因组的完整性很重要。核层蛋白 A/C 的功能障碍与癌症、衰老和退行性疾病有关。核层蛋白 A/C 调节基因组稳定性的机制仍知之甚少。我们证明了核层蛋白 A/C 在 DNA 复制中的关键作用。核层蛋白 A/C 与新生 DNA 结合,特别是在复制应激(RS)期间,以确保复制叉保护因子 RPA 和 RAD51 的募集。这些 ssDNA 结合蛋白分别被认为是 RS 的第一和第二响应者,它们在稳定、重塑和修复停滞的复制叉方面发挥作用,以确保正确的重新启动和基因组稳定性。核层蛋白 A/C 耗竭后,RPA 和 RAD51 的募集减少会引发复制叉不稳定(RFI),其特征是 MRE11 核酸酶介导的新生 DNA 降解、RS 诱导的 DNA 损伤以及对复制抑制剂的敏感性。重要的是,与同源重组缺陷细胞不同,核层蛋白 A/C 耗竭细胞中的 RFI 与复制叉反转无关。因此,核酸酶的进入点不是反转的复制叉,而是在 RS 期间产生的未被 RPA 和 RAD51 保护的 ssDNA 区域。一致地,核层蛋白 A/C 耗竭细胞中的 RFI 通过外源性过表达 RPA 或 RAD51 得到挽救。这些数据揭示了结构核蛋白在 RS 期间通过促进 RPA 和 RAD51 募集到停滞的复制叉来保护 ssDNA 免受核酸酶的作用。支持这一模型,我们显示了 RPA 和核层蛋白 A/C 之间的物理相互作用。我们认为 RS 是核层蛋白病和核层蛋白 A/C 缺陷肿瘤中基因组不稳定性的主要来源。