Suppr超能文献

金黄色葡萄球菌 NH 依赖性 NAD 合成酶中氨转运的结构和分子动力学。

Structural and molecular dynamics of ammonia transport in Staphylococcus aureus NH-dependent NAD synthetase.

机构信息

Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.

Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.

出版信息

Int J Biol Macromol. 2022 Apr 1;203:593-600. doi: 10.1016/j.ijbiomac.2022.01.138. Epub 2022 Feb 2.

Abstract

Ammonia dependent NAD synthetase from multi drug resistance Staphylococcus aureus catalyzes ATP dependent formation of NAD from deamido-NAD and ammonia at the synthetase active site. Binding of ATP accompanies a large movement of flexible loop region (205-225) acting as a lid to the catalytic core. A 17 Å long ammonia tunnel with an entry and exit radius of 3.5 Å and 3.2 Å respectively allows transfer of ammonia from surface to the active site of the enzyme in each monomer to attack the C7N=O7N linkage of transient intermediate NAD-adenylate thus releasing NAD. In this study, we report structural details of ammonia transport tunnel in Staphylococcus aureus NH-dependent NAD synthetase and compared their architecture and dynamics with other bacterial and eukaryotic enzymes. Tunnel shows conformational variations in apo and substrate complexes and is less intricate compared to glutamine dependent counterparts. We have also performed steered molecular dynamic simulations of ammonia transport across the tunnel in enzyme-intermediate complex which reveals critical bottleneck residues and structural determinants during ammonium migration. Ordered water molecules and conserved charged residues form a network of hydrogen bonds and electrostatic interaction which facilitate the ammonium movement towards the active center. Analysis of the sMD simulated structural snapshots delineates the conformational reshaping of ammonia tunnel at the different step of the enzymatic reaction. Tunnel architecture and environment could offer the new target site to design novel small molecule inhibitors for the development of more efficient therapeutics against multi drug resistant S. aureus strains.

摘要

耐多药金黄色葡萄球菌依赖氨的 NAD 合成酶在合成酶活性部位催化 deamido-NAD 和氨与 ATP 依赖性形成 NAD。ATP 的结合伴随着灵活环区(205-225)的大运动,该环区充当催化核心的盖子。一个长 17Å的氨隧道,入口和出口半径分别为 3.5Å和 3.2Å,允许氨从表面转移到每个单体酶的活性部位,攻击瞬态中间物 NAD-腺嘌呤的 C7N=O7N 键,从而释放 NAD。在这项研究中,我们报告了耐多药金黄色葡萄球菌 NH 依赖 NAD 合成酶中氨运输隧道的结构细节,并将其与其他细菌和真核酶的结构和动力学进行了比较。隧道在无配体和底物复合物中表现出构象变化,与依赖谷氨酰胺的对应物相比,其结构不那么复杂。我们还对酶-中间复合物中氨穿过隧道的定向分子动力学模拟进行了研究,揭示了铵迁移过程中的关键瓶颈残基和结构决定因素。有序水分子和保守带电残基形成氢键和静电相互作用网络,促进铵向活性中心的移动。对 sMD 模拟结构快照的分析描绘了酶反应不同步骤中氨隧道的构象重塑。隧道的结构和环境可以提供新的靶位点,用于设计新型小分子抑制剂,以开发针对耐多药金黄色葡萄球菌菌株的更有效的治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验