Suppr超能文献

高维随机场的预期行为:Bansal 和 Peterson [ ] 的结果存在矛盾。

The expected behaviour of random fields in high dimensions: contradictions in the results of Bansal and Peterson [].

机构信息

Department of Statistics, University of Oxford, Oxford OX1 3LB, UK.

Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.

出版信息

Magn Reson Imaging. 2022 Jul;90:70-75. doi: 10.1016/j.mri.2021.11.010. Epub 2022 Feb 1.

Abstract

Bansal and Peterson (2018) found that in simple stationary Gaussian simulations Random Field Theory incorrectly estimates the number of clusters of a Gaussian field that lie above a threshold. Their results contradict the existing literature and appear to have arisen due to errors in their code. Using reproducible code we demonstrate that in their simulations Random Field Theory correctly predicts the expected number of clusters and therefore that many of their results are invalid.

摘要

班萨尔和彼得森(2018 年)发现,在简单的静态高斯模拟中,随机域理论错误地估计了位于阈值以上的高斯场的聚类数量。他们的结果与现有文献相矛盾,似乎是由于他们的代码错误造成的。我们使用可重现的代码证明,在他们的模拟中,随机域理论正确地预测了预期的聚类数量,因此他们的许多结果是无效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1020/7612853/28ada409ef6e/EMS145853-f001.jpg

相似文献

1
The expected behaviour of random fields in high dimensions: contradictions in the results of Bansal and Peterson [].
Magn Reson Imaging. 2022 Jul;90:70-75. doi: 10.1016/j.mri.2021.11.010. Epub 2022 Feb 1.
2
Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions.
Magn Reson Imaging. 2018 Jun;49:101-115. doi: 10.1016/j.mri.2018.01.004. Epub 2018 Feb 3.
3
Sampling Gaussian stationary random fields: A stochastic realization approach.
ISA Trans. 2023 Nov;142:386-398. doi: 10.1016/j.isatra.2023.08.007. Epub 2023 Aug 10.
4
Gaussian Process Approach to Constructing Transferable Force Fields for Thiolate-Protected Gold Nanoclusters.
J Chem Inf Model. 2025 Apr 28;65(8):3892-3902. doi: 10.1021/acs.jcim.4c01495. Epub 2025 Jan 28.
5
Extrema statistics in the dynamics of a non-Gaussian random field.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022142. doi: 10.1103/PhysRevE.87.022142. Epub 2013 Feb 26.
6
Standard errors for EM estimates in generalized linear models with random effects.
Biometrics. 2000 Sep;56(3):761-7. doi: 10.1111/j.0006-341x.2000.00761.x.
7
Adaptive Gaussian Markov random fields for child mortality estimation.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae030.
8
Detecting activations in PET and fMRI: levels of inference and power.
Neuroimage. 1996 Dec;4(3 Pt 1):223-35. doi: 10.1006/nimg.1996.0074.
9
Expected Number and Height Distribution of Critical Points of Smooth Isotropic Gaussian Random Fields.
Bernoulli (Andover). 2018 Nov;24(4B):3422-3446. doi: 10.3150/17-BEJ964. Epub 2018 Apr 18.
10

本文引用的文献

1
Statistical testing and power analysis for brain-wide association study.
Med Image Anal. 2018 Jul;47:15-30. doi: 10.1016/j.media.2018.03.014. Epub 2018 Apr 5.
2
Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions.
Magn Reson Imaging. 2018 Jun;49:101-115. doi: 10.1016/j.mri.2018.01.004. Epub 2018 Feb 3.
3
Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5. doi: 10.1073/pnas.1602413113. Epub 2016 Jun 28.
4
Assessing the significance of focal activations using their spatial extent.
Hum Brain Mapp. 1994;1(3):210-20. doi: 10.1002/hbm.460010306.
5
A unified statistical approach for determining significant signals in images of cerebral activation.
Hum Brain Mapp. 1996;4(1):58-73. doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O.
6
Validating cluster size inference: random field and permutation methods.
Neuroimage. 2003 Dec;20(4):2343-56. doi: 10.1016/j.neuroimage.2003.08.003.
7
Controlling the familywise error rate in functional neuroimaging: a comparative review.
Stat Methods Med Res. 2003 Oct;12(5):419-46. doi: 10.1191/0962280203sm341ra.
8
Detecting activations in PET and fMRI: levels of inference and power.
Neuroimage. 1996 Dec;4(3 Pt 1):223-35. doi: 10.1006/nimg.1996.0074.
9
A three-dimensional statistical analysis for CBF activation studies in human brain.
J Cereb Blood Flow Metab. 1992 Nov;12(6):900-18. doi: 10.1038/jcbfm.1992.127.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验