Department of Biomedical Engineering, Columbia University, New York, NY, USA.
Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
Med Image Anal. 2022 Apr;77:102357. doi: 10.1016/j.media.2022.102357. Epub 2022 Jan 18.
Automatic skin lesion analysis in terms of skin lesion segmentation and disease classification is of great importance. However, these two tasks are challenging as skin lesion images of multi-ethnic population are collected using various scanners in multiple international medical institutes. To address them, most recent works adopt convolutional neural networks (CNNs) for skin lesion analysis. However, due to the intrinsic locality of the convolution operator, CNNs lack the ability to capture contextual information and long-range dependency. To improve the baseline performance established by CNNs, we propose a Fully Transformer Network (FTN) to learn long-range contextual information for skin lesion analysis. FTN is a hierarchical Transformer computing features using Spatial Pyramid Transformer (SPT). SPT has linear computational complexity as it introduces a spatial pyramid pooling (SPP) module into multi-head attention (MHA)to largely reduce the computation and memory usage. We conduct extensive skin lesion analysis experiments to verify the effectiveness and efficiency of FTN using ISIC 2018 dataset. Our experimental results show that FTN consistently outperforms other state-of-the-art CNNs in terms of computational efficiency and the number of tunable parameters due to our efficient SPT and hierarchical network structure. The code and models will be public available at: https://github.com/Novestars/Fully-Transformer-Network.
自动的皮肤病变分析在皮肤病变分割和疾病分类方面非常重要。然而,这两个任务都具有挑战性,因为多民族人群的皮肤病变图像是在多个国际医学机构使用各种扫描仪收集的。为了解决这些问题,最近的大多数工作都采用卷积神经网络(CNN)进行皮肤病变分析。然而,由于卷积算子的固有局部性,CNN 缺乏捕获上下文信息和长程依赖的能力。为了提高 CNN 建立的基准性能,我们提出了一个全Transformer 网络(FTN)来学习皮肤病变分析的长程上下文信息。FTN 是一个分层的 Transformer,使用空间金字塔变换(SPT)来计算特征。SPT 具有线性计算复杂度,因为它在多头注意力(MHA)中引入了空间金字塔池化(SPP)模块,从而大大减少了计算和内存使用。我们使用 ISIC 2018 数据集进行了广泛的皮肤病变分析实验,以验证 FTN 的有效性和效率。我们的实验结果表明,由于我们高效的 SPT 和分层网络结构,FTN 在计算效率和可调参数数量方面始终优于其他最先进的 CNN。代码和模型将在:https://github.com/Novestars/Fully-Transformer-Network 上公开。