ETU-Net:基于边缘增强引导的 U-Net 与 Transformer 的皮肤病变分割。
ETU-Net: edge enhancement-guided U-Net with transformer for skin lesion segmentation.
机构信息
School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, People's Republic of China.
Department of Dermatology, Wuxi No.2 People's Hospital, Wuxi, People's Republic of China.
出版信息
Phys Med Biol. 2023 Dec 22;69(1). doi: 10.1088/1361-6560/ad13d2.
Convolutional neural network (CNN)-based deep learning algorithms have been widely used in recent years for automatic skin lesion segmentation. However, the limited receptive fields of convolutional architectures hinder their ability to effectively model dependencies between different image ranges. The transformer is often employed in conjunction with CNN to extract both global and local information from images, as it excels at capturing long-range dependencies. However, this method cannot accurately segment skin lesions with blurred boundaries. To overcome this difficulty, we proposed ETU-Net.ETU-Net, a novel multi-scale architecture, combines edge enhancement, CNN, and transformer. We introduce the concept of edge detection operators into difference convolution, resulting in the design of the edge enhanced convolution block (EC block) and the local transformer block (LT block), which emphasize edge features. To capture the semantic information contained in local features, we propose the multi-scale local attention block (MLA block), which utilizes convolutions with different kernel sizes. Furthermore, to address the boundary uncertainty caused by patch division in the transformer, we introduce a novel global transformer block (GT block), which allows each patch to gather full-size feature information.Extensive experimental results on three publicly available skin datasets (PH2, ISIC-2017, and ISIC-2018) demonstrate that ETU-Net outperforms state-of-the-art hybrid methods based on CNN and Transformer in terms of segmentation performance. Moreover, ETU-Net exhibits excellent generalization ability in practical segmentation applications on dermatoscopy images contributed by the Wuxi No.2 People's Hospital.We propose ETU-Net, a novel multi-scale U-Net model guided by edge enhancement, which can address the challenges posed by complex lesion shapes and ambiguous boundaries in skin lesion segmentation tasks.
基于卷积神经网络(CNN)的深度学习算法近年来在皮肤病变自动分割中得到了广泛应用。然而,卷积架构的有限感受野限制了其有效建模不同图像区域之间依赖关系的能力。在结合 CNN 从图像中提取全局和局部信息时,常使用 Transformer,因为它擅长捕获长程依赖关系。但是,这种方法不能准确地分割边界模糊的皮肤病变。为了克服这一困难,我们提出了 ETU-Net。ETU-Net 是一种新颖的多尺度架构,结合了边缘增强、CNN 和 Transformer。我们将边缘检测算子的概念引入到差分卷积中,从而设计出边缘增强卷积块(EC 块)和局部 Transformer 块(LT 块),强调边缘特征。为了捕获局部特征中包含的语义信息,我们提出了多尺度局部注意力块(MLA 块),该块利用不同核大小的卷积。此外,为了解决 Transformer 中由于补丁划分引起的边界不确定性问题,我们引入了一种新颖的全局 Transformer 块(GT 块),允许每个补丁收集全尺寸特征信息。在三个公开的皮肤数据集(PH2、ISIC-2017 和 ISIC-2018)上进行的广泛实验结果表明,ETU-Net 在分割性能方面优于基于 CNN 和 Transformer 的最先进的混合方法。此外,ETU-Net 在由无锡市第二人民医院提供的皮肤科图像的实际分割应用中表现出出色的泛化能力。我们提出了 ETU-Net,这是一种基于边缘增强的新型多尺度 U-Net 模型,可以解决皮肤病变分割任务中复杂病变形状和边界模糊带来的挑战。