Suppr超能文献

一种用于定量磁化率成像(QSM)的数据驱动深度学习流程。

A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM).

作者信息

Wang Zuojun, Xia Peng, Huang Fan, Wei Hongjiang, Hui Edward Sai-Kam, Mak Henry Ka-Fung, Cao Peng

机构信息

Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China.

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Magn Reson Imaging. 2022 May;88:89-100. doi: 10.1016/j.mri.2022.01.018. Epub 2022 Feb 3.

Abstract

PURPOSE

This study developed a data-driven optimization to improve the accuracy of deep learning QSM quantification.

METHODS

The proposed deep learning QSM pipeline consisted of two projections onto convex set (POCS) models designed to decouple trainable network components with the spherical mean value (SMV) filters and dipole kernel in the data-driven optimization. They were a background field removal network (named POCSnet1) and a dipole inversion network (named POCSnet2). Both POCSnet1 and POCSnet2 were the unrolled V-Net with iterative data-driven optimization to enforce the data fidelity. For training POCSnet1, we simulated phantom data with random geometric shapes as the background susceptibility sources. For training POCSnet2, we used geometric shapes to mimic the QSM. The evaluation was performed on synthetic data, a public COSMOS (N = 1), and clinical data from a Parkinson's disease cohort (N = 71) and small-vessel disease cohort (N = 26). For comparison, DLL2, FINE, and autoQSM, were implemented and tested under the same experimental setting.

RESULTS

On COSMOS, results from POCSnet1 were more similar to that of the V-SHARP method with NRMSE = 23.7% and SSIM = 0.995, compared with the NRMSE = 62.7% and SSIM = 0.975 for SHARQnet, a naïve V-Net model. On COSMOS, the NRMSE and HFEN for POCSnet2 were 58.1% and 56.7%; while for DLL2, FINE, and autoQSM, they were 62.0% and 61.2%, 69.8% and 67.5%, and 87.5% and 85.3%, respectively. On the Parkinson's disease cohort, our results were consistent with those obtained from VSHARP+STAR-QSM with biases <3% and outperformed the SHARQnet+DeepQSM that had biases of 7% to 10%. The sensitivity of cerebral microbleed detection using our pipeline was 100%, compared with 92% by SHARQnet+DeepQSM.

CONCLUSION

Data-driven optimization improved the accuracy of QSM quantification compared with that of naïve V-Net models.

摘要

目的

本研究开发了一种数据驱动的优化方法,以提高深度学习定量磁敏感成像(QSM)的准确性。

方法

所提出的深度学习QSM流程由两个凸集投影(POCS)模型组成,旨在在数据驱动的优化中,将可训练网络组件与球均值(SMV)滤波器和偶极子内核解耦。它们分别是背景场去除网络(名为POCSnet1)和偶极子反演网络(名为POCSnet2)。POCSnet1和POCSnet2均为展开式V-Net,通过迭代数据驱动的优化来确保数据保真度。对于训练POCSnet1,我们模拟了具有随机几何形状的体模数据作为背景磁化率源。对于训练POCSnet2,我们使用几何形状来模拟QSM。评估在合成数据、公开的COSMOS数据集(N = 1)以及来自帕金森病队列(N = 71)和小血管病队列(N = 26)的临床数据上进行。为作比较 在相同实验设置下实现并测试了DLL2、FINE和autoQSM。

结果

在COSMOS数据集上,POCSnet1的结果与V-SHARP方法的结果更为相似,归一化均方根误差(NRMSE)= 23.7%,结构相似性指数(SSIM)= 0.995,相比之下,简单V-Net模型SHARQnet的NRMSE = 62.7%,SSIM = 0.975。在COSMOS数据集上,POCSnet2的NRMSE和高频能量归一化(HFEN)分别为58.1%和56.7%;而DLL2、FINE和autoQSM的相应值分别为62.0%和61.2%、69.8%和67.5%、87.5%和85.3%。在帕金森病队列中,我们的结果与通过VSHARP + STAR-QSM获得的结果一致,偏差<3%,且优于偏差为7%至10%的SHARQnet + DeepQSM。使用我们的流程检测脑微出血的灵敏度为100%,而SHARQnet + DeepQSM为92%。

结论

与简单的V-Net模型相比,数据驱动的优化提高了QSM量化的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验