文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的磁共振定量磁化率成像脑小血管病微出血检测。

Deep-Learning-Based MRI Microbleeds Detection for Cerebral Small Vessel Disease on Quantitative Susceptibility Mapping.

机构信息

Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China.

Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.

出版信息

J Magn Reson Imaging. 2024 Sep;60(3):1165-1175. doi: 10.1002/jmri.29198. Epub 2023 Dec 27.


DOI:10.1002/jmri.29198
PMID:38149750
Abstract

BACKGROUND: Cerebral microbleeds (CMB) are indicators of severe cerebral small vessel disease (CSVD) that can be identified through hemosiderin-sensitive sequences in MRI. Specifically, quantitative susceptibility mapping (QSM) and deep learning were applied to detect CMBs in MRI. PURPOSE: To automatically detect CMB on QSM, we proposed a two-stage deep learning pipeline. STUDY TYPE: Retrospective. SUBJECTS: A total number of 1843 CMBs from 393 patients (69 ± 12) with cerebral small vessel disease were included in this study. Seventy-eight subjects (70 ± 13) were used as external testing. FIELD STRENGTH/SEQUENCE: 3 T/QSM. ASSESSMENT: The proposed pipeline consisted of two stages. In stage I, 2.5D fast radial symmetry transform (FRST) algorithm along with a one-layer convolutional network was used to identify CMB candidate regions in QSM images. In stage II, the V-Net was utilized to reduce false positives. The V-Net was trained using CMB and non CMB labels, which allowed for high-level feature extraction and differentiation between CMBs and CMB mimics like vessels. The location of CMB was assessed according to the microbleeds anatomical rating scale (MARS) system. STATISTICAL TESTS: The sensitivity and positive predicative value (PPV) were reported to evaluate the performance of the model. The number of false positive per subject was presented. RESULTS: Our pipeline demonstrated high sensitivities of up to 94.9% at stage I and 93.5% at stage II. The overall sensitivity was 88.9%, and the false positive rate per subject was 2.87. With respect to MARS, sensitivities of above 85% were observed for nine different brain regions. DATA CONCLUSION: We have presented a deep learning pipeline for detecting CMB in the CSVD cohort, along with a semi-automated MARS scoring system using the proposed method. Our results demonstrated the successful application of deep learning for CMB detection on QSM and outperformed previous handcrafted methods. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

摘要

背景:脑微出血(CMB)是严重脑小血管疾病(CSVD)的指标,可以通过 MRI 中的含铁血黄素敏感序列来识别。具体来说,定量磁化率映射(QSM)和深度学习被应用于 MRI 中的 CMB 检测。

目的:为了自动检测 QSM 上的 CMB,我们提出了一个两阶段的深度学习管道。

研究类型:回顾性。

受试者:本研究纳入了 393 例(69±12 岁)脑小血管病患者的 1843 个 CMB,78 例(70±13 岁)作为外部测试。

磁场强度/序列:3T/QSM。

评估:所提出的管道由两个阶段组成。在第一阶段,2.5D 快速径向对称变换(FRST)算法和一层卷积网络用于识别 QSM 图像中的 CMB 候选区域。在第二阶段,使用 V-Net 减少假阳性。V-Net 使用 CMB 和非 CMB 标签进行训练,这允许进行高级特征提取,并区分 CMB 和 CMB 模拟物(如血管)。CMB 的位置根据微出血解剖评分系统(MARS)进行评估。

统计学检验:报告敏感性和阳性预测值(PPV)以评估模型的性能。报告了每个受试者的假阳性数量。

结果:我们的管道在第一阶段的敏感性高达 94.9%,在第二阶段的敏感性为 93.5%。总体敏感性为 88.9%,每个受试者的假阳性率为 2.87。对于 MARS,九个不同脑区的敏感性均高于 85%。

数据结论:我们提出了一种用于 CSVD 队列中 CMB 检测的深度学习管道,以及使用所提出的方法进行半自动 MARS 评分系统。我们的结果表明,深度学习在 QSM 上的 CMB 检测中得到了成功应用,并优于以前的手工制作方法。

证据水平:2 技术功效:第 2 级。

相似文献

[1]
Deep-Learning-Based MRI Microbleeds Detection for Cerebral Small Vessel Disease on Quantitative Susceptibility Mapping.

J Magn Reson Imaging. 2024-9

[2]
Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning.

Neuroimage. 2019-5-20

[3]
Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach.

Neuroimage Clin. 2020

[4]
Cerebral Microbleeds Are Associated With Increased Brain Iron and Cognitive Impairment in Patients With Cerebral Small Vessel Disease: A Quantitative Susceptibility Mapping Study.

J Magn Reson Imaging. 2022-9

[5]
Novel Approaches to Detection of Cerebral Microbleeds: Single Deep Learning Model to Achieve a Balanced Performance.

J Stroke Cerebrovasc Dis. 2021-9

[6]
DEEPMIR: a deep neural network for differential detection of cerebral microbleeds and iron deposits in MRI.

Sci Rep. 2021-7-8

[7]
CMB-HUNT: Automatic detection of cerebral microbleeds using a deep neural network.

Comput Biol Med. 2022-12

[8]
Comparison of quantitative susceptibility mapping methods on evaluating radiation-induced cerebral microbleeds and basal ganglia at 3T and 7T.

NMR Biomed. 2022-5

[9]
Naïve Bayes classifier assisted automated detection of cerebral microbleeds in susceptibility-weighted imaging brain images.

Biochem Cell Biol. 2023-12-1

[10]
A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning.

Neuroimage Clin. 2018-8-4

引用本文的文献

[1]
A Novel Detection and Classification Framework for Diagnosing of Cerebral Microbleeds Using Transformer and Language.

Bioengineering (Basel). 2024-9-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索