Suppr超能文献

层状钒酸铵纳米带作为从受污染水中去除锶和铯的高效吸附剂。

Layered ammonium vanadate nanobelt as efficient adsorbents for removal of Sr and Cs from contaminated water.

作者信息

Zhang Heng, Li Chunmin, Chen Xujie, Fu Hao, Chen Yanliang, Ning Shunyan, Fujita Toyohisa, Wei Yuezhou, Wang Xinpeng

机构信息

Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning, 530004, PR China.

College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.

出版信息

J Colloid Interface Sci. 2022 Jun;615:110-123. doi: 10.1016/j.jcis.2022.01.164. Epub 2022 Jan 29.

Abstract

In this study, a layered ammonium vanadate (NHVO) nanobelt adsorbent was synthesized by a facile hydrothermal method to remove Sr and Cs from contaminated water. The NHVO nanobelt was texturally and morphologically characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman, thermogravimetric differential thermal analyzer (TG-DSC), Brunauer- Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS) both before and after adsorbing Sr and Cs. The results showed that the NHVO nanobelt exhibited the optimal morphological structure with a 2:1 ratio of NHVO:dipropylamine. In the lattice of the adsorbent, the horizontal distance between oxygen atoms was 0.55 nm, the vertical distance between vanadium was 0.35 nm, and the layer distance of the adsorbent was 0.931 nm. The structure characterization indicated the VO octahedron formed a basic framework through sharing connected vertices. Adsorption mechanism studies indicated that ion exchange was the main adsorption mechanism for removing Sr and Cs. Batch experiments revealed that the adsorption capacity for Sr was 192.52 mg/g under a pH of 2. Similarly, the adsorption capacity for Cs was 251.09 mg/g when the pH was 5. The adsorption kinetics and adsorption isotherms data were in accordance with the pseudo-second-order kinetic model and Langmuir model, respectively. Adsorption isotherms results also indicated that the adsorption of Sr and Cs was endothermic (ΔH = 3.6 kJ/mol, ΔH = 29.1 kJ/mol) and increased entropy (ΔS = 29.15 J/molK, ΔS = 160.38 J/molK). Finally, the structure of the adsorbent, the adsorption performance and mechanism, and the interpretation of selective adsorption were also calculated by DFT method at the molecular level and the results were consistent with the experimental data.

摘要

在本研究中,通过简便的水热法合成了一种层状钒酸铵(NHVO)纳米带吸附剂,用于去除污染水中的锶和铯。在吸附锶和铯前后,利用扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、拉曼光谱、热重-差示热分析仪(TG-DSC)、布鲁诺尔-埃米特-泰勒(BET)和X射线光电子能谱(XPS)对NHVO纳米带进行了结构和形貌表征。结果表明,NHVO纳米带在NHVO与二丙胺的比例为2:1时呈现出最佳的形态结构。在吸附剂的晶格中,氧原子之间的水平距离为0.55纳米,钒之间的垂直距离为0.35纳米,吸附剂的层间距为0.931纳米。结构表征表明VO八面体通过共享连接顶点形成了基本框架。吸附机理研究表明,离子交换是去除锶和铯的主要吸附机理。批次实验表明,在pH为2时,对锶的吸附容量为192.52毫克/克。同样,当pH为5时,对铯的吸附容量为251.09毫克/克。吸附动力学和吸附等温线数据分别符合准二级动力学模型和朗缪尔模型。吸附等温线结果还表明,锶和铯吸附是吸热的(ΔH = 3.6千焦/摩尔,ΔH = 29.1千焦/摩尔)且熵增加(ΔS = 29.15焦耳/摩尔·开尔文,ΔS = 160.38焦耳/摩尔·开尔文)。最后,还通过密度泛函理论(DFT)方法在分子水平上计算了吸附剂的结构、吸附性能和机理以及选择性吸附的解释,结果与实验数据一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验