Suppr超能文献

氧化石墨烯对锶吸附的等温线及动力学模型

Isotherm and Kinetic Modeling of Strontium Adsorption on Graphene Oxide.

作者信息

Abu-Nada Abdulrahman, Abdala Ahmed, McKay Gordon

机构信息

Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar.

Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha 23874, Qatar.

出版信息

Nanomaterials (Basel). 2021 Oct 20;11(11):2780. doi: 10.3390/nano11112780.

Abstract

In this study, graphene oxide (GO) was synthesized using Hummers method. The synthesized GO was characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) nitrogen adsorption. The analyses confirmed the presence of oxygen functional groups (C=O and C-O-C) on the GO surface. These oxygen functional groups act as active sites in the adsorption Sr (II). The BET analysis revealed the surface area of GO of 232 m/g with a pore volume of 0.40 cm/g. The synthesized GO was used as an adsorbent for removing Sr (II) from aqueous solutions. The adsorption equilibrium and kinetic results were consistent with the Langmuir isotherm model and the pseudo-second-order kinetic model. A maximum strontium adsorption capacity of 131.4 mg/g was achieved. The results show that the GO has an excellent adsorption capability for removing Sr (II) from aqueous solutions and potential use in wastewater treatment applications.

摘要

在本研究中,采用Hummers法合成了氧化石墨烯(GO)。使用场发射扫描电子显微镜(FE-SEM)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)和布鲁诺尔-埃米特-特勒(BET)氮气吸附对合成的GO进行了表征。分析证实了GO表面存在氧官能团(C=O和C-O-C)。这些氧官能团在吸附Sr(II)中充当活性位点。BET分析表明,GO的表面积为232 m²/g,孔体积为0.40 cm³/g。合成的GO用作从水溶液中去除Sr(II)的吸附剂。吸附平衡和动力学结果与朗缪尔等温线模型和准二级动力学模型一致。实现了最大锶吸附容量为131.4 mg/g。结果表明,GO对从水溶液中去除Sr(II)具有优异的吸附能力,在废水处理应用中具有潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf30/8618333/3d979fdf405f/nanomaterials-11-02780-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验