Suppr超能文献

具有潜在变量的反事实推理及其在精神卫生保健中的应用。

Counterfactual inference with latent variable and its application in mental health care.

作者信息

Marchezini Guilherme F, Lacerda Anisio M, Pappa Gisele L, Meira Wagner, Miranda Debora, Romano-Silva Marco A, Costa Danielle S, Diniz Leandro Malloy

机构信息

Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil.

出版信息

Data Min Knowl Discov. 2022;36(2):811-840. doi: 10.1007/s10618-021-00818-9. Epub 2022 Jan 31.

Abstract

This paper deals with the problem of modeling counterfactual reasoning in scenarios where, apart from the observed endogenous variables, we have a latent variable that affects the outcomes and, consequently, the results of counterfactuals queries. This is a common setup in healthcare problems, including mental health. We propose a new framework where the aforementioned problem is modeled as a multivariate regression and the counterfactual model accounts for both observed and a latent variable, where the latter represents what we call the patient individuality factor ( ). In mental health, focusing on individuals is paramount, as past experiences can change how people see or deal with situations, but individuality cannot be directly measured. To the best of our knowledge, this is the first counterfactual approach that considers to provide answers to counterfactual queries, such as: what if I change the social support of a patient, to what extent can I change his/her anxiety? The framework combines concepts from deep representation learning and causal inference to infer the value of and capture both of causal variables. Experiments are performed with both synthetic and real-world datasets, where we predict how changes in people's actions may lead to different outcomes in terms of symptoms of mental illness and quality of life. Results show the model learns the individually factor with errors lower than 0.05 and answers counterfactual queries that are supported by the medical literature. The model has the potential to recommend small changes in people's lives that may completely change their relationship with mental illness.

摘要

本文探讨了在以下场景中对反事实推理进行建模的问题

除了观察到的内生变量外,我们还有一个潜在变量,它会影响结果,进而影响反事实查询的结果。这在包括心理健康在内的医疗保健问题中是一种常见的设置。我们提出了一个新的框架,其中上述问题被建模为多元回归,反事实模型考虑了观察到的变量和一个潜在变量,后者代表我们所说的患者个体因素( )。在心理健康领域,关注个体至关重要,因为过去的经历会改变人们看待或处理情况的方式,但个体性无法直接测量。据我们所知,这是第一种考虑 来回答反事实查询的反事实方法,例如:如果我改变患者的社会支持,我能在多大程度上改变他/她的焦虑?该框架结合了深度表示学习和因果推理的概念,以推断 的值并捕捉因果变量的 。我们使用合成数据集和真实世界数据集进行了实验,在这些实验中,我们预测人们行为的变化如何可能导致精神疾病症状和生活质量方面的不同结果。结果表明,该模型学习个体因素的误差低于0.05,并回答了医学文献支持的反事实查询。该模型有潜力推荐人们生活中的微小变化,这些变化可能会彻底改变他们与精神疾病的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28d9/8801560/efd464ddb1c6/10618_2021_818_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验