Suppr超能文献

脑龄差距与心血管危险因素之间关系的探索性因果分析。

An exploratory causal analysis of the relationships between the brain age gap and cardiovascular risk factors.

作者信息

Mouches Pauline, Wilms Matthias, Bannister Jordan J, Aulakh Agampreet, Langner Sönke, Forkert Nils D

机构信息

Biomedical Engineering Program, University of Calgary, Calgary, AB, Canada.

Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.

出版信息

Front Aging Neurosci. 2022 Aug 22;14:941864. doi: 10.3389/fnagi.2022.941864. eCollection 2022.

Abstract

The brain age gap (BAG) has been shown to capture accelerated brain aging patterns and might serve as a biomarker for several neurological diseases. Moreover, it was also shown that it captures other biological information related to modifiable cardiovascular risk factors. Previous studies have explored statistical relationships between the BAG and cardiovascular risk factors. However, none of those studies explored causal relationships between the BAG and cardiovascular risk factors. In this work, we employ causal structure discovery techniques and define a Bayesian network to model the assumed causal relationships between the BAG, estimated using morphometric T1-weighted magnetic resonance imaging brain features from 2025 adults, and several cardiovascular risk factors. This setup allows us to not only assess observed conditional probability distributions of the BAG given cardiovascular risk factors, but also to isolate the causal effect of each cardiovascular risk factor on BAG using causal inference. Results demonstrate the feasibility of the proposed causal analysis approach by illustrating intuitive causal relationships between variables. For example, body-mass-index, waist-to-hip ratio, smoking, and alcohol consumption were found to impact the BAG, with the greatest impact for obesity markers resulting in higher chances of developing accelerated brain aging. Moreover, the findings show that causal effects differ from correlational effects, demonstrating the importance of accounting for variable relationships and confounders when evaluating the information captured by a biomarker. Our work demonstrates the feasibility and advantages of using causal analyses instead of purely correlation-based and univariate statistical analyses in the context of brain aging and related problems.

摘要

脑龄差距(BAG)已被证明能够捕捉大脑加速衰老模式,并可能作为多种神经疾病的生物标志物。此外,研究还表明,它能捕捉到与可改变的心血管危险因素相关的其他生物学信息。以往的研究探讨了BAG与心血管危险因素之间的统计关系。然而,这些研究均未探讨BAG与心血管危险因素之间的因果关系。在这项研究中,我们采用因果结构发现技术,定义了一个贝叶斯网络,以对BAG与若干心血管危险因素之间假定的因果关系进行建模。BAG是通过对2025名成年人的形态学T1加权磁共振成像脑特征进行估计得到的。这种设置不仅使我们能够评估在给定心血管危险因素情况下BAG的观察到的条件概率分布,还能使用因果推断来分离每个心血管危险因素对BAG的因果效应。结果通过说明变量之间直观的因果关系,证明了所提出的因果分析方法的可行性。例如,发现体重指数、腰臀比、吸烟和饮酒会影响BAG,其中肥胖标志物的影响最大,导致大脑加速衰老的可能性更高。此外,研究结果表明因果效应与相关效应不同,这表明在评估生物标志物所捕捉的信息时,考虑变量关系和混杂因素的重要性。我们的研究证明了在脑衰老及相关问题的背景下,使用因果分析而非单纯基于相关性和单变量统计分析的可行性和优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d12/9441743/6dd38a040a0d/fnagi-14-941864-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验