Suppr超能文献

铜(111)、铜(100)和铜(211)表面水煤气变换反应的机理研究

Mechanism Investigations on Water Gas Shift Reaction over Cu(111), Cu(100), and Cu(211) Surfaces.

作者信息

Li Zhiyuan, Li Na, Wang Nan, Zhou Bing, Yin Pan, Song Boyu, Yu Jun, Yang Yusen

机构信息

Stated Grid Integrated Energy Service Group Co., Ltd., Beijing 100052, P. R. China.

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

出版信息

ACS Omega. 2022 Jan 14;7(4):3514-3521. doi: 10.1021/acsomega.1c05991. eCollection 2022 Feb 1.

Abstract

Cu-based catalysts are commonly applied in low-temperature water gas shift (WGS) reactions, owing to their low cost and high catalytic activity. The influence of different Cu surfaces on catalytic activity and mechanism over the WGS reaction remains unclear. In this work, the effect of different structures of surfaces on the WGS mechanism is studied using density functional theory (DFT). Three surface terminations (Cu(100), Cu(111), and Cu(211)) of Cu are considered, and the coordination number (CN) of the active Cu site is in the range from 7 to 9. The most stable surface is Cu(211). Then, d-band center values are calculated, which decrease in the following sequence: Cu(211) > Cu(100) > Cu(111). This shows that d-band center values decrease with increasing coordination number. The increase in the centers of the d-band leads to an increase in the adsorption strength of CO and HO adsorbates, which is in line with the theory of the d-band center. In addition, the further calculated mechanism for WGS reaction over three different Cu surfaces illustrates that the carboxyl path is the most favorable mechanism, and the rate-determining step is HO dissociation. Cu(211) shows excellent WGS catalytic performance, better than the Cu(100) and Cu(111) surfaces. This work provides theoretical insights into the rational design of highly active Cu-based catalysts toward WGS reaction.

摘要

铜基催化剂因其低成本和高催化活性而常用于低温水煤气变换(WGS)反应。不同铜表面对WGS反应催化活性和机理的影响尚不清楚。在这项工作中,使用密度泛函理论(DFT)研究了不同表面结构对WGS机理的影响。考虑了铜的三种表面终止结构(Cu(100)、Cu(111)和Cu(211)),活性铜位点的配位数(CN)在7到9之间。最稳定的表面是Cu(211)。然后,计算了d带中心值,其按以下顺序降低:Cu(211) > Cu(100) > Cu(111)。这表明d带中心值随配位数增加而降低。d带中心的增加导致CO和HO吸附质的吸附强度增加,这与d带中心理论一致。此外,对三种不同铜表面上WGS反应的进一步计算机理表明,羧基路径是最有利的机理,速率决定步骤是HO解离。Cu(21)表现出优异的WGS催化性能,优于Cu(100)和Cu(111)表面。这项工作为合理设计用于WGS反应的高活性铜基催化剂提供了理论见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a450/8811938/4418c8a1ca09/ao1c05991_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验