Stella S. Yi (
Simona C. Kwon, NYU Grossman School of Medicine.
Health Aff (Millwood). 2022 Feb;41(2):296-303. doi: 10.1377/hlthaff.2021.01417.
The Asian American health narrative reflects a long history of structural racism in the US and the complex interplay of racialized history, immigrant patterns, and policies regarding Asians in the US. Yet owing to systematic issues in data collection including missing or misclassified data for Asian Americans and practices that lead to indiscriminate grouping of unlike individuals (for example, Chinese, Vietnamese, and Bangladeshi) together in data systems and pervasive stereotypes of Asian Americans, the drivers and experiences of health disparities experienced by these diverse groups remain unclear. The perpetual exclusion and misrepresentation of Asian American experiences in health research is exacerbated by three racialized stereotypes-the model minority, healthy immigrant effect, and perpetual foreigner-that fuel scientific and societal perceptions that Asian Americans do not experience health disparities. This codifies racist biases against the Asian American population in a mutually reinforcing cycle. In this article we describe the poor-quality data infrastructure and biases on the part of researchers and public health professionals, and we highlight examples from the health disparities literature. We provide recommendations on how to implement systems-level change and educational reform to infuse racial equity in future policy and practice for Asian American communities.
亚裔美国人的健康状况反映了美国长期存在的结构性种族主义,以及美国的种族历史、移民模式以及针对亚洲人的政策之间的复杂相互作用。然而,由于数据收集系统中存在系统性问题,包括亚裔美国人的数据缺失或分类错误,以及将数据系统中不同个体(例如中国人、越南人和孟加拉国人)不加区分地归为一类的做法,以及对亚裔美国人的普遍刻板印象,这些不同群体经历的健康差距的驱动因素和经验仍不清楚。健康研究中对亚裔美国人经历的永久排斥和误解,因三种种族主义刻板印象而加剧——模范少数族裔、健康移民效应和永远的外国人——这些刻板印象助长了科学和社会对亚裔美国人不存在健康差距的看法。这在一个相互加强的循环中使针对亚裔美国人的种族主义偏见合法化。在本文中,我们描述了数据基础设施质量差和研究人员及公共卫生专业人员的偏见,并从健康差距文献中举了一些例子。我们提供了一些建议,以实施系统层面的变革和教育改革,为未来的政策和实践注入种族公平,以造福亚裔美国人社区。