Suppr超能文献

针对细菌和真菌病原体中的 ATP 合酶:超越结核分枝杆菌。

Targeting the ATP synthase in bacterial and fungal pathogens: beyond Mycobacterium tuberculosis.

机构信息

Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.

Department of Molecular Cell Biology, AIMMS, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

出版信息

J Glob Antimicrob Resist. 2022 Jun;29:29-41. doi: 10.1016/j.jgar.2022.01.026. Epub 2022 Feb 4.

Abstract

The ATP synthase is a multicomponent enzyme that is largely conserved across the kingdoms of life. In many species the ATP synthase is central in the synthesis of ATP by using the electrochemical proton gradient generated via the electron transport chain. Bacteria inhabit very diverse ecological niches; hence their metabolism to extract nutrients and generation of ATP varies from species to species. Some species are obligate aerobes (e.g., Mycobacterium tuberculosis), relying on oxidative phosphorylation for ATP synthesis, whereas others are strict anaerobes (e.g., Clostridioides difficile) relying primarily on substrate-level phosphorylation using various fermentative pathways. Yet other species, such as Staphylococcus aureus and Escherichia coli are facultative anaerobes and can convert energy via both respiratory and fermentative pathways. The metabolic propensity and growth conditions experienced by bacterial species have a great impact on the necessity of a functional ATP synthase for viability. The ATP synthase has been validated as a druggable target with the approval of the ATP synthase inhibitor bedaquiline for treatment of M. tuberculosis, an organism in which the ATP synthase is essential for growth. Currently, no ATP synthase inhibitors are in clinical use against non-mycobacterial pathogens. In this review, the physiological functions of the ATP synthase in various bacterial pathogens are discussed in relation to the metabolic pathways utilized for providing energy. The ATP synthase is essential in important pathogenic species that are obligate aerobes, obligate anaerobes and aerotolerant anaerobes, whereas it is dispensable for growth in most facultative anaerobic pathogens. Interference with the ATP synthase in facultative anaerobes has physiological consequences, such as membrane hyperpolarization, which can be exploited for combination therapies. Collectively, the available data indicate that the ATP synthase is an interesting target for development of new antimicrobials beyond M. tuberculosis.

摘要

ATP 合酶是一种多组分酶,在生命王国中广泛保守。在许多物种中,ATP 合酶是通过利用电子传递链产生的电化学质子梯度合成 ATP 的核心。细菌栖息在非常多样化的生态位中;因此,它们的代谢方式因物种而异,以提取营养物质并产生 ATP。有些物种是严格需氧的(例如,结核分枝杆菌),依赖氧化磷酸化来合成 ATP,而另一些则是严格厌氧菌(例如,艰难梭菌),主要依赖各种发酵途径的底物水平磷酸化。还有一些物种,如金黄色葡萄球菌和大肠杆菌,是兼性厌氧菌,可以通过呼吸和发酵途径来转换能量。细菌物种经历的代谢倾向和生长条件对功能性 ATP 合酶生存能力的必要性有很大影响。ATP 合酶已被验证为一个可成药的靶点,ATP 合酶抑制剂贝达喹啉已被批准用于治疗结核分枝杆菌,这种生物体的生长对 ATP 合酶至关重要。目前,没有针对非分枝杆菌病原体的 ATP 合酶抑制剂在临床上使用。在这篇综述中,讨论了各种细菌病原体中 ATP 合酶的生理功能与提供能量的代谢途径有关。ATP 合酶在严格需氧菌、严格厌氧菌和耐氧厌氧菌等重要致病性物种中是必需的,而在大多数兼性厌氧菌中则是可有可无的。干扰兼性厌氧菌中的 ATP 合酶会产生生理后果,例如膜超极化,这可以用于联合治疗。总的来说,现有数据表明,ATP 合酶是除结核分枝杆菌之外开发新抗菌药物的一个有趣目标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验