文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

PairGP:配对多条件研究中纵向数据的高斯过程建模

PairGP: Gaussian process modeling of longitudinal data from paired multi-condition studies.

作者信息

Vantini Michele, Mannerström Henrik, Rautio Sini, Ahlfors Helena, Stockinger Brigitta, Lähdesmäki Harri

机构信息

Department of Computer Science, Aalto University, Konemiehentie 2, Espoo, 02 150, Finland.

The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom.

出版信息

Comput Biol Med. 2022 Apr;143:105268. doi: 10.1016/j.compbiomed.2022.105268. Epub 2022 Jan 26.


DOI:10.1016/j.compbiomed.2022.105268
PMID:35131609
Abstract

High-throughput technologies produce gene expression time-series data that need fast and specialized algorithms to be processed. While current methods already deal with different aspects, such as the non-stationarity of the process and the temporal correlation, they often fail to take into account the pairing among replicates. We propose PairGP, a non-stationary Gaussian process method to compare gene expression time-series across several conditions that can account for paired longitudinal study designs and can identify groups of conditions that have different gene expression dynamics. We demonstrate the method on both simulated data and previously unpublished RNA sequencing (RNA-seq) time-series with five conditions. The results show the advantage of modeling the pairing effect to better identify groups of conditions with different dynamics. The pairing effect model displays good capabilities of selecting the most probable grouping of conditions even in the presence of a high number of conditions. The developed method is of general application and can be applied to any gene expression time series dataset. The model can identify common replicate effects among the samples coming from the same biological replicates and model those as separate components. Learning the pairing effect as a separate component, not only allows us to exclude it from the model to get better estimates of the condition effects, but also to improve the precision of the model selection process. The pairing effect that was accounted before as noise, is now identified as a separate component, resulting in more accurate and explanatory models of the data.

摘要

高通量技术产生的基因表达时间序列数据需要快速且专门的算法来处理。虽然当前方法已经处理了不同方面的问题,比如过程的非平稳性和时间相关性,但它们往往没有考虑重复样本之间的配对关系。我们提出了PairGP,一种非平稳高斯过程方法,用于比较多种条件下的基因表达时间序列,该方法能够考虑配对纵向研究设计,并能够识别具有不同基因表达动态的条件组。我们在模拟数据和之前未发表的包含五种条件的RNA测序(RNA-seq)时间序列上演示了该方法。结果显示了对配对效应进行建模以更好地识别具有不同动态的条件组的优势。即使在存在大量条件的情况下,配对效应模型在选择最可能的条件分组方面也表现出良好的能力。所开发的方法具有广泛的适用性,可应用于任何基因表达时间序列数据集。该模型可以识别来自相同生物学重复的样本之间的共同重复效应,并将其作为单独的成分进行建模。将配对效应作为一个单独的成分来学习,不仅使我们能够将其从模型中排除以更好地估计条件效应,还能提高模型选择过程的精度。之前被视为噪声的配对效应,现在被识别为一个单独的成分,从而产生更准确且更具解释性的数据模型。

相似文献

[1]
PairGP: Gaussian process modeling of longitudinal data from paired multi-condition studies.

Comput Biol Med. 2022-4

[2]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[5]
Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads.

BMC Genomics. 2015

[6]
Including probe-level measurement error in robust mixture clustering of replicated microarray gene expression.

Stat Appl Genet Mol Biol. 2010

[7]
DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates.

Bioinformatics. 2017-10-1

[8]
Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation.

Nucleic Acids Res. 2012-1-28

[9]
rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data.

Proc Natl Acad Sci U S A. 2014-12-23

[10]
A comparison of strategies for generating artificial replicates in RNA-seq experiments.

Sci Rep. 2022-5-3

引用本文的文献

[1]
GPMelt: A hierarchical Gaussian process framework to explore the dark meltome of thermal proteome profiling experiments.

PLoS Comput Biol. 2024-9

[2]
Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data.

Genes (Basel). 2021-2-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索