GPMelt:一种分层高斯过程框架,用于探索热蛋白质组 profiling 实验的暗熔体组。

GPMelt: A hierarchical Gaussian process framework to explore the dark meltome of thermal proteome profiling experiments.

机构信息

Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Department of Biology, ETH Zürich, Zürich, Switzerland.

出版信息

PLoS Comput Biol. 2024 Sep 27;20(9):e1011632. doi: 10.1371/journal.pcbi.1011632. eCollection 2024 Sep.

Abstract

Thermal proteome profiling (TPP) is a proteome wide technology that enables unbiased detection of protein drug interactions as well as changes in post-translational state of proteins between different biological conditions. Statistical analysis of temperature range TPP (TPP-TR) datasets relies on comparing protein melting curves, describing the amount of non-denatured proteins as a function of temperature, between different conditions (e.g. presence or absence of a drug). However, state-of-the-art models are restricted to sigmoidal melting behaviours while unconventional melting curves, representing up to 50% of TPP-TR datasets, have recently been shown to carry important biological information. We present a novel statistical framework, based on hierarchical Gaussian process models and named GPMelt, to make TPP-TR datasets analysis unbiased with respect to the melting profiles of proteins. GPMelt scales to multiple conditions, and extension of the model to deeper hierarchies (i.e. with additional sub-levels) allows to deal with complex TPP-TR protocols. Collectively, our statistical framework extends the analysis of TPP-TR datasets for both protein and peptide level melting curves, offering access to thousands of previously excluded melting curves and thus substantially increasing the coverage and the ability of TPP to uncover new biology.

摘要

热蛋白质组分析(TPP)是一种蛋白质组学技术,能够在不同的生物条件下,无偏地检测蛋白质药物相互作用以及蛋白质翻译后状态的变化。TPP-TR(TPP 温度范围)数据集的统计分析依赖于比较蛋白质的熔化曲线,将不同条件下(例如存在或不存在药物)的非变性蛋白质的数量描述为温度的函数。然而,目前最先进的模型仅限于 S 形熔化行为,而最近已经证明,代表高达 50%的 TPP-TR 数据集的非传统熔化曲线携带重要的生物学信息。我们提出了一种新的统计框架,基于层次高斯过程模型,并命名为 GPMelt,以使 TPP-TR 数据集分析不受蛋白质熔化曲线的影响。GPMelt 可以扩展到多个条件,并且模型的扩展到更深层次的层次结构(即具有额外的子级别)允许处理复杂的 TPP-TR 协议。总的来说,我们的统计框架扩展了 TPP-TR 数据集在蛋白质和肽水平熔化曲线的分析,为以前排除的数千条熔化曲线提供了访问途径,从而大大增加了 TPP 发现新生物学的覆盖范围和能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0744/11463780/d689a793e600/pcbi.1011632.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索