Suppr超能文献

肝环境施加的约束使肝局部 CD8 T 细胞的运动策略多样化。

Liver Environment-Imposed Constraints Diversify Movement Strategies of Liver-Localized CD8 T Cells.

机构信息

Department of Microbiology, University of Tennessee, Knoxville, TN.

Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; and.

出版信息

J Immunol. 2022 Mar 1;208(5):1292-1304. doi: 10.4049/jimmunol.2100842. Epub 2022 Feb 7.

Abstract

Pathogen-specific CD8 T cells face the problem of finding rare cells that present their cognate Ag either in the lymph node or in infected tissue. Although quantitative details of T cell movement strategies in some tissues such as lymph nodes or skin have been relatively well characterized, we still lack quantitative understanding of T cell movement in many other important tissues, such as the spleen, lung, liver, and gut. We developed a protocol to generate stable numbers of liver-located CD8 T cells, used intravital microscopy to record movement patterns of CD8 T cells in livers of live mice, and analyzed these and previously published data using well-established statistical and computational methods. We show that, in most of our experiments, -specific liver-localized CD8 T cells perform correlated random walks characterized by transiently superdiffusive displacement with persistence times of 10-15 min that exceed those observed for T cells in lymph nodes. Liver-localized CD8 T cells typically crawl on the luminal side of liver sinusoids (i.e., are in the blood); simulating T cell movement in digital structures derived from the liver sinusoids illustrates that liver structure alone is sufficient to explain the relatively long superdiffusive displacement of T cells. In experiments when CD8 T cells in the liver poorly attach to the sinusoids (e.g., 1 wk after immunization with radiation-attenuated sporozoites), T cells also undergo Lévy flights: large displacements occurring due to cells detaching from the endothelium, floating with the blood flow, and reattaching at another location. Our analysis thus provides quantitative details of movement patterns of liver-localized CD8 T cells and illustrates how structural and physiological details of the tissue may impact T cell movement patterns.

摘要

病原体特异性 CD8 T 细胞面临着寻找在淋巴结或感染组织中呈现其同源 Ag 的稀有细胞的问题。尽管已经相对较好地描述了某些组织(如淋巴结或皮肤)中 T 细胞运动策略的定量细节,但我们仍然缺乏对许多其他重要组织(如脾脏、肺、肝和肠道)中 T 细胞运动的定量理解。我们开发了一种方案来产生稳定数量的位于肝脏的 CD8 T 细胞,使用活体显微镜记录活小鼠肝脏中 CD8 T 细胞的运动模式,并使用成熟的统计和计算方法分析这些数据和以前发表的数据。我们表明,在我们的大多数实验中,抗原特异性的肝脏定位 CD8 T 细胞表现出短暂的超扩散位移的相关随机游动,具有超过在淋巴结中观察到的持久性时间 10-15 分钟。肝脏定位的 CD8 T 细胞通常在肝窦的腔侧爬行(即在血液中);模拟来源于肝窦的数字结构中的 T 细胞运动表明,仅肝结构就足以解释 T 细胞相对较长的超扩散位移。在 CD8 T 细胞在肝脏中附着不良到窦状隙的实验中(例如,用辐射减弱的子孢子免疫 1 周后),T 细胞也会经历 Lévy 飞行:由于细胞从内皮细胞上脱离、随血流漂浮并在另一个位置重新附着而导致的大位移。因此,我们的分析提供了肝脏定位 CD8 T 细胞运动模式的定量细节,并说明了组织的结构和生理细节如何影响 T 细胞运动模式。

相似文献

1
Liver Environment-Imposed Constraints Diversify Movement Strategies of Liver-Localized CD8 T Cells.
J Immunol. 2022 Mar 1;208(5):1292-1304. doi: 10.4049/jimmunol.2100842. Epub 2022 Feb 7.
2
Brain-localized CD4 and CD8 T cells perform correlated random walks and not Levy walks.
F1000Res. 2023 Oct 3;12:87. doi: 10.12688/f1000research.129923.2. eCollection 2023.
3
Varying Immunizations With Radiation-Attenuated Sporozoites Alter Tissue-Specific CD8 T Cell Dynamics.
Front Immunol. 2018 May 28;9:1137. doi: 10.3389/fimmu.2018.01137. eCollection 2018.
10
Memory phenotype CD8(+) T cells persist in livers of mice protected against malaria by immunization with attenuated Plasmodium berghei sporozoites.
Eur J Immunol. 1999 Dec;29(12):3978-86. doi: 10.1002/(SICI)1521-4141(199912)29:12<3978::AID-IMMU3978>3.0.CO;2-0.

引用本文的文献

1
Using Imaris to rigorously track PET-defined sites of lung inflammation in -exposed non-human primates.
bioRxiv. 2025 Jul 7:2025.07.04.663191. doi: 10.1101/2025.07.04.663191.
2
Microbes in porous environments: from active interactions to emergent feedback.
Biophys Rev. 2024 Apr 19;16(2):173-188. doi: 10.1007/s12551-024-01185-7. eCollection 2024 Apr.
3
Heterogeneity in killing efficacy of individual effector CD8 T cells against Plasmodium liver stages.
Proc Biol Sci. 2023 Nov 29;290(2011):20232280. doi: 10.1098/rspb.2023.2280.
5
Brain-localized CD4 and CD8 T cells perform correlated random walks and not Levy walks.
F1000Res. 2023 Oct 3;12:87. doi: 10.12688/f1000research.129923.2. eCollection 2023.
6
A review on lymphocyte radiosensitivity and its impact on radiotherapy.
Front Oncol. 2023 Aug 3;13:1201500. doi: 10.3389/fonc.2023.1201500. eCollection 2023.
7
8
Interactions with Asialo-Glycoprotein Receptors and Platelets Are Dispensable for CD8 T Cell Localization in the Murine Liver.
J Immunol. 2022 Jun 15;208(12):2738-2748. doi: 10.4049/jimmunol.2101037. Epub 2022 Jun 1.

本文引用的文献

2
Intermittent inverse-square Lévy walks are optimal for finding targets of all sizes.
Sci Adv. 2021 Apr 9;7(15). doi: 10.1126/sciadv.abe8211. Print 2021 Apr.
3
Reply to "Comment on 'Inverse Square Lévy Walks are not Optimal Search Strategies for d≥2"'.
Phys Rev Lett. 2021 Jan 29;126(4):048902. doi: 10.1103/PhysRevLett.126.048902.
4
Comment on "Inverse Square Lévy Walks are not Optimal Search Strategies for d≥2".
Phys Rev Lett. 2021 Jan 29;126(4):048901. doi: 10.1103/PhysRevLett.126.048901.
5
Experimental determination of the force of malaria infection reveals a non-linear relationship to mosquito sporozoite loads.
PLoS Pathog. 2020 May 26;16(5):e1008181. doi: 10.1371/journal.ppat.1008181. eCollection 2020 May.
6
Lymph node stromal cells: cartographers of the immune system.
Nat Immunol. 2020 Apr;21(4):369-380. doi: 10.1038/s41590-020-0635-3. Epub 2020 Mar 23.
7
Loopy Lévy flights enhance tracer diffusion in active suspensions.
Nature. 2020 Mar;579(7799):364-367. doi: 10.1038/s41586-020-2086-2. Epub 2020 Mar 18.
8
Inverse Square Lévy Walks are not Optimal Search Strategies for d≥2.
Phys Rev Lett. 2020 Feb 28;124(8):080601. doi: 10.1103/PhysRevLett.124.080601.
9
Clustering of Activated CD8 T Cells Around Malaria-Infected Hepatocytes Is Rapid and Is Driven by Antigen-Specific Cells.
Front Immunol. 2019 Sep 20;10:2153. doi: 10.3389/fimmu.2019.02153. eCollection 2019.
10
Distributed Adaptive Search in T Cells: Lessons From Ants.
Front Immunol. 2019 Jun 13;10:1357. doi: 10.3389/fimmu.2019.01357. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验