Suppr超能文献

圈状 Lévy 飞行增强活性悬浮液中示踪剂的扩散。

Loopy Lévy flights enhance tracer diffusion in active suspensions.

机构信息

Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan.

Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.

出版信息

Nature. 2020 Mar;579(7799):364-367. doi: 10.1038/s41586-020-2086-2. Epub 2020 Mar 18.

Abstract

Brownian motion is widely used as a model of diffusion in equilibrium media throughout the physical, chemical and biological sciences. However, many real-world systems are intrinsically out of equilibrium owing to energy-dissipating active processes underlying their mechanical and dynamical features. The diffusion process followed by a passive tracer in prototypical active media, such as suspensions of active colloids or swimming microorganisms, differs considerably from Brownian motion, as revealed by a greatly enhanced diffusion coefficient and non-Gaussian statistics of the tracer displacements. Although these characteristic features have been extensively observed experimentally, there is so far no comprehensive theory explaining how they emerge from the microscopic dynamics of the system. Here we develop a theoretical framework to model the hydrodynamic interactions between the tracer and the active swimmers, which shows that the tracer follows a non-Markovian coloured Poisson process that accounts for all empirical observations. The theory predicts a long-lived Lévy flight regime of the loopy tracer motion with a non-monotonic crossover between two different power-law exponents. The duration of this regime can be tuned by the swimmer density, suggesting that the optimal foraging strategy of swimming microorganisms might depend crucially on their density in order to exploit the Lévy flights of nutrients. Our framework can be applied to address important theoretical questions, such as the thermodynamics of active systems, and practical ones, such as the interaction of swimming microorganisms with nutrients and other small particles (for example, degraded plastic) and the design of artificial nanoscale machines.

摘要

布朗运动被广泛应用于物理、化学和生物科学中作为平衡介质扩散的模型。然而,由于机械和动力学特性下能量耗散的主动过程,许多现实世界的系统本质上是处于非平衡状态的。在典型的主动介质中,被动示踪剂所遵循的扩散过程与布朗运动有很大的不同,这表现为扩散系数大大增强和示踪剂位移的非高斯统计。尽管这些特征已经在实验中得到了广泛的观察,但目前还没有一个全面的理论来解释它们是如何从系统的微观动力学中产生的。在这里,我们开发了一个理论框架来模拟示踪剂与主动游泳者之间的水动力相互作用,该框架表明,示踪剂遵循非马尔可夫有色泊松过程,可以解释所有的经验观察。该理论预测了环状示踪剂运动的长寿命 Lévy 飞行状态,两种不同幂律指数之间存在非单调交叉。这个状态的持续时间可以通过游泳者的密度来调节,这表明游泳微生物的最佳觅食策略可能取决于它们的密度,以利用营养物质的 Lévy 飞行。我们的框架可以应用于解决重要的理论问题,如主动系统的热力学,以及实际问题,如游泳微生物与营养物质和其他小颗粒(例如,降解塑料)的相互作用,以及人工纳米机器的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验