Suppr超能文献

基于抗幽门螺杆菌蛋白和胃蛋白酶原抗体反应的非贲门胃腺癌风险预测模型。

A Predictive Model of Noncardia Gastric Adenocarcinoma Risk Using Antibody Response to Helicobacter pylori Proteins and Pepsinogen.

机构信息

Department of Epidemiology, University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Chapel Hill, North Carolina.

Department of Biostatistics, University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Chapel Hill, North Carolina.

出版信息

Cancer Epidemiol Biomarkers Prev. 2022 Apr 1;31(4):811-820. doi: 10.1158/1055-9965.EPI-21-0869.

Abstract

BACKGROUND

Blood-based biomarkers for gastric cancer risk stratification could facilitate targeting screening to people who will benefit from it most. The ABC Method, which stratifies individuals by their Helicobacter pylori infection and serum-diagnosed chronic atrophic gastritis status, is currently used in Japan for this purpose. Most gastric cancers are caused by chronic H. pylori infection, but few studies have explored the capability of antibody response to H. pylori proteins to predict gastric cancer risk in addition to established predictors.

METHODS

We used the least absolute shrinkage and selection operator (Lasso) to build a predictive model of noncardia gastric adenocarcinoma risk from serum data on pepsinogen and antibody response to 13 H. pylori antigens as well as demographic and lifestyle factors from a large international study in East Asia.

RESULTS

Our best model had a significantly (P < 0.001) higher AUC of 73.79% [95% confidence interval (CI), 70.86%-76.73%] than the ABC Method (68.75%; 95% CI, 65.91%-71.58%). At 75% specificity, the new model had greater sensitivity than the ABC Method (58.67% vs. 52.68%) as well as NPV (68.24% vs. 66.29%).

CONCLUSIONS

Along with serologically defined chronic atrophic gastritis, antibody response to the H. pylori proteins HP 0305, HP 1564, and UreA can improve the prediction of gastric cancer risk.

IMPACT

The new risk stratification model could help target more invasive gastric screening resources to individuals at high risk.

摘要

背景

用于胃癌风险分层的基于血液的生物标志物可以促进将筛查针对最受益的人群。ABC 方法根据幽门螺杆菌感染和血清诊断的慢性萎缩性胃炎状态对个体进行分层,目前在日本用于此目的。大多数胃癌是由慢性 H. pylori 感染引起的,但很少有研究探讨针对 H. pylori 蛋白的抗体反应除了已建立的预测因子之外,预测胃癌风险的能力。

方法

我们使用最小绝对收缩和选择算子(Lasso),从东亚一项大型国际研究中血清胃蛋白酶原和针对 13 种 H. pylori 抗原的抗体反应以及人口统计学和生活方式因素的数据中,构建非贲门胃腺癌风险的预测模型。

结果

我们的最佳模型具有显著更高的 AUC(73.79% [95%置信区间(CI),70.86%-76.73%])(P < 0.001)比 ABC 方法(68.75%;95% CI,65.91%-71.58%)。在特异性为 75%时,新模型的敏感性高于 ABC 方法(58.67% vs. 52.68%)和阴性预测值(68.24% vs. 66.29%)。

结论

除了血清学定义的慢性萎缩性胃炎外,针对 H. pylori 蛋白 HP 0305、HP 1564 和 UreA 的抗体反应可以提高胃癌风险的预测。

影响

新的风险分层模型可以帮助将更具侵入性的胃癌筛查资源靶向高风险个体。

相似文献

1
A Predictive Model of Noncardia Gastric Adenocarcinoma Risk Using Antibody Response to Helicobacter pylori Proteins and Pepsinogen.
Cancer Epidemiol Biomarkers Prev. 2022 Apr 1;31(4):811-820. doi: 10.1158/1055-9965.EPI-21-0869.
7
Discrimination between Precancerous Gastric Lesions and Gastritis Using a Gastric Cancer Risk Stratification Model.
Asian Pac J Cancer Prev. 2023 Mar 1;24(3):935-943. doi: 10.31557/APJCP.2023.24.3.935.
8
9
High-Negative Anti- IgG Antibody Titers and Long-Term Risk of Gastric Cancer: Results from a Large-Scale Population-Based Cohort Study in Japan.
Cancer Epidemiol Biomarkers Prev. 2020 Feb;29(2):420-426. doi: 10.1158/1055-9965.EPI-19-0993. Epub 2019 Dec 11.
10
Human gastric cancer risk screening: From rat pepsinogen studies to the ABC method.
Proc Jpn Acad Ser B Phys Biol Sci. 2021;97(8):462-478. doi: 10.2183/pjab.97.023.

引用本文的文献

1
Artificial intelligence utilization in cancer screening program across ASEAN: a scoping review.
BMC Cancer. 2025 Apr 15;25(1):703. doi: 10.1186/s12885-025-14026-x.
2
The artificial intelligence revolution in gastric cancer management: clinical applications.
Cancer Cell Int. 2025 Mar 21;25(1):111. doi: 10.1186/s12935-025-03756-4.
3
Weighted metrics are required when evaluating the performance of prediction models in nested case-control studies.
BMC Med Res Methodol. 2024 May 17;24(1):115. doi: 10.1186/s12874-024-02213-6.
4
Cancer Progress and Priorities: Gastric Cancer.
Cancer Epidemiol Biomarkers Prev. 2023 Apr 3;32(4):473-486. doi: 10.1158/1055-9965.EPI-22-0994.
5
Discrimination between Precancerous Gastric Lesions and Gastritis Using a Gastric Cancer Risk Stratification Model.
Asian Pac J Cancer Prev. 2023 Mar 1;24(3):935-943. doi: 10.31557/APJCP.2023.24.3.935.

本文引用的文献

1
Immunostimulatory membrane proteins potentiate -induced carcinogenesis by enabling CagA translocation.
Gut Microbes. 2021 Jan-Dec;13(1):1-13. doi: 10.1080/19490976.2020.1862613.
3
How to Read Articles That Use Machine Learning: Users' Guides to the Medical Literature.
JAMA. 2019 Nov 12;322(18):1806-1816. doi: 10.1001/jama.2019.16489.
6
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
7
Blood Biomarkers and Gastric Cancer Survival in China.
Cancer Epidemiol Biomarkers Prev. 2018 Mar;27(3):342-344. doi: 10.1158/1055-9965.EPI-17-1084. Epub 2017 Dec 20.
8
Detection of gastric atrophy by circulating pepsinogens: A comparison of three assays.
Helicobacter. 2017 Aug;22(4). doi: 10.1111/hel.12393. Epub 2017 May 29.
9
The challenge of screening for early gastric cancer in China.
Lancet. 2016 Nov 26;388(10060):2606. doi: 10.1016/S0140-6736(16)32226-7.
10
Comparisons of risk prediction methods using nested case-control data.
Stat Med. 2017 Feb 10;36(3):455-465. doi: 10.1002/sim.7143. Epub 2016 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验