Lee Won-Yong, Kang Min-Sung, Kim Gil-Sung, Choi Jae Won, Park No-Won, Sim Yumin, Kim Yun-Ho, Seong Maeng-Je, Yoon Young-Gui, Saitoh Eiji, Lee Sang-Kwon
Department of Physics and Center for Berry Curvature based New Phenomena, Chung-Ang University, Seoul 06974, Republic of Korea.
Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan.
ACS Nano. 2022 Feb 22;16(2):3404-3416. doi: 10.1021/acsnano.2c00359. Epub 2022 Feb 8.
The Seebeck effect refers to the production of an electric voltage when different temperatures are applied on a conductor, and the corresponding voltage-production efficiency is represented by the Seebeck coefficient. We report a Seebeck effect: thermal generation of driving voltage from the heat flowing in a thin PtSe/PtSe van der Waals homostructure at the interface. We refer to the effect as the interface-induced Seebeck effect. By exploiting this effect by directly attaching multilayered PtSe over high-resistance PtSe thin films as a hybridized single structure, we obtained the highly challenging in-plane Seebeck coefficient of the PtSe films that exhibit extremely high resistances. This direct attachment further enhanced the in-plane thermal Seebeck coefficients of the PtSe/PtSe van der Waals homostructure on sapphire substrates. Consequently, we successfully enhanced the in-plane Seebeck coefficients for the PtSe (10 nm)/PtSe (2 nm) homostructure approximately 42% compared to that of a pure PtSe (10 nm) layer at 300 K. These findings represent a significant achievement in understanding the interface-induced Seebeck effect and provide an effective strategy for promising large-area thermoelectric energy harvesting devices using two-dimensional transition metal dichalcogenide materials, which are ideal thermoelectric platforms with high figures of merit.
塞贝克效应是指当在导体上施加不同温度时产生的电压,相应的电压产生效率由塞贝克系数表示。我们报道了一种塞贝克效应:在薄的PtSe/PtSe范德华同质结构的界面处,热流产生驱动电压。我们将这种效应称为界面诱导塞贝克效应。通过将多层PtSe直接附着在高电阻PtSe薄膜上作为一种杂交单结构来利用这种效应,我们获得了具有极高电阻的PtSe薄膜极具挑战性的面内塞贝克系数。这种直接附着进一步提高了蓝宝石衬底上PtSe/PtSe范德华同质结构的面内热塞贝克系数。因此,在300 K时,与纯PtSe(10 nm)层相比,我们成功地将PtSe(10 nm)/PtSe(2 nm)同质结构的面内塞贝克系数提高了约42%。这些发现代表了在理解界面诱导塞贝克效应方面的一项重大成就,并为使用二维过渡金属二硫属化物材料的大面积热电能量收集装置提供了一种有效的策略,二维过渡金属二硫属化物材料是具有高优值的理想热电平台。