Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA.
Faraday Discuss. 2022 May 18;234(0):9-30. doi: 10.1039/d2fd00001f.
Metal sites in biology often exhibit unique spectroscopic features that reflect novel geometric and electronic structures imposed by the protein that are key to reactivity. The blue copper active site involved in long range, rapid biological electron transfer is a classic example. This review presents an overview of both traditional and synchrotron based spectroscopic methods and their coupling to electronic structure calculations to understand the unique features of the blue copper active site, their contributions to function and the role of the protein in determining the geometric and electronic structure of the active site (called the "entatic state"). The relation of this active site to other biological electron transfer sites is further developed. In particular, ultrafast XFEL spectroscopy is used to evaluate the methionine-S-Fe bond in cytochrome , and its entatic control by the protein in determining function (electron transfer apoptosis).
生物中的金属位点通常表现出独特的光谱特征,反映了蛋白质赋予的新颖的几何和电子结构,这些结构对于反应性至关重要。涉及长程、快速生物电子转移的蓝色铜活性位点就是一个经典的例子。本文综述了传统和基于同步加速器的光谱方法及其与电子结构计算的结合,以了解蓝色铜活性位点的独特特征、它们对功能的贡献以及蛋白质在确定活性位点的几何和电子结构(称为“熵态”)中的作用。进一步发展了该活性位点与其他生物电子转移位点的关系。特别是,利用超快 XFEL 光谱学来评估细胞色素 c 中的蛋氨酸-S-Fe 键及其在蛋白质控制功能(电子转移与细胞凋亡)中的熵态控制作用。