Kroll Thomas, Hadt Ryan G, Wilson Samuel A, Lundberg Marcus, Yan James J, Weng Tsu-Chien, Sokaras Dimosthenis, Alonso-Mori Roberto, Casa Diego, Upton Mary H, Hedman Britt, Hodgson Keith O, Solomon Edward I
Department of Chemistry, Stanford University , Stanford, California 94305, United States.
J Am Chem Soc. 2014 Dec 31;136(52):18087-99. doi: 10.1021/ja5100367. Epub 2014 Dec 18.
Axial Cu-S(Met) bonds in electron transfer (ET) active sites are generally found to lower their reduction potentials. An axial S(Met) bond is also present in cytochrome c (cyt c) and is generally thought to increase the reduction potential. The highly covalent nature of the porphyrin environment in heme proteins precludes using many spectroscopic approaches to directly study the Fe site to experimentally quantify this bond. Alternatively, L-edge X-ray absorption spectroscopy (XAS) enables one to directly focus on the 3d-orbitals in a highly covalent environment and has previously been successfully applied to porphyrin model complexes. However, this technique cannot be extended to metalloproteins in solution. Here, we use metal K-edge XAS to obtain L-edge like data through 1s2p resonance inelastic X-ray scattering (RIXS). It has been applied here to a bis-imidazole porphyrin model complex and cyt c. The RIXS data on the model complex are directly correlated to L-edge XAS data to develop the complementary nature of these two spectroscopic methods. Comparison between the bis-imidazole model complex and cyt c in ferrous and ferric oxidation states show quantitative differences that reflect differences in axial ligand covalency. The data reveal an increased covalency for the S(Met) relative to N(His) axial ligand and a higher degree of covalency for the ferric states relative to the ferrous states. These results are reproduced by DFT calculations, which are used to evaluate the thermodynamics of the Fe-S(Met) bond and its dependence on redox state. These results provide insight into a number of previous chemical and physical results on cyt c.
人们普遍发现,电子转移(ET)活性位点中的轴向铜 - 硫(蛋氨酸)键会降低其还原电位。细胞色素c(cyt c)中也存在轴向硫(蛋氨酸)键,一般认为它会增加还原电位。血红素蛋白中卟啉环境的高度共价性质使得许多光谱方法无法直接用于研究铁位点以通过实验量化这种键。另外,L边X射线吸收光谱(XAS)能让人直接聚焦于高度共价环境中的3d轨道,此前已成功应用于卟啉模型配合物。然而,该技术无法扩展到溶液中的金属蛋白。在此,我们利用金属K边XAS通过1s2p共振非弹性X射线散射(RIXS)获得类似L边的数据。它已应用于双咪唑卟啉模型配合物和cyt c。模型配合物的RIXS数据与L边XAS数据直接相关,以展现这两种光谱方法的互补性质。亚铁和高铁氧化态下双咪唑模型配合物与cyt c之间的比较显示出定量差异,这些差异反映了轴向配体共价性的不同。数据表明,相对于N(组氨酸)轴向配体,硫(蛋氨酸)的共价性增加,并且相对于亚铁态,高铁态具有更高程度的共价性。这些结果通过密度泛函理论(DFT)计算得以重现,该计算用于评估铁 - 硫(蛋氨酸)键的热力学及其对氧化还原状态的依赖性。这些结果为先前关于cyt c的许多化学和物理结果提供了深入见解。