Kang Bong Joo, Rohrbach David, Brunner Fabian D J, Bagiante Salvatore, Sigg Hans, Feurer Thomas
Institute of Applied Physics, University of Bern, 3012 Bern, Switzerland.
Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen, Switzerland.
Nano Lett. 2022 Mar 9;22(5):2016-2022. doi: 10.1021/acs.nanolett.1c04776. Epub 2022 Feb 8.
Judiciously designed two-dimensional THz metamaterials consisting of resonant metallic structures embedded in a dielectric environment locally enhance the electromagnetic field of an incident THz pulse to values sufficiently high to cause nonlinear responses of the environment. In semiconductors, the response is attributed to nonlinear transport phenomena via intervalley scattering, impact ionization, or interband tunneling and can affect the resonant behavior of the metallic structure, which results, for instance, in mode switching. However, details of mode switching, especially time scales, are still debated. By using metallic split-ring resonators with nm-size gaps on intrinsic semiconductors with different bandgaps, we identify the most relevant carrier generation processes. In addition, by combining nonlinear THz time-domain spectroscopy with simulations, we establish the fastest time constant for mode switching to around hundred femtoseconds. Our results not only elucidate dominant carrier generation mechanisms and dynamics but also pave the route toward optically driven modulators with THz bandwidth.
精心设计的二维太赫兹超材料由嵌入电介质环境中的谐振金属结构组成,可将入射太赫兹脉冲的电磁场局部增强到足够高的值,从而引起环境的非线性响应。在半导体中,这种响应归因于通过谷间散射、碰撞电离或带间隧穿的非线性输运现象,并且会影响金属结构的谐振行为,例如导致模式切换。然而,模式切换的细节,尤其是时间尺度,仍存在争议。通过在具有不同带隙的本征半导体上使用具有纳米尺寸间隙的金属裂环谐振器,我们确定了最相关的载流子产生过程。此外,通过将非线性太赫兹时域光谱与模拟相结合,我们确定了模式切换的最快时间常数约为一百飞秒。我们的结果不仅阐明了主要的载流子产生机制和动力学,还为具有太赫兹带宽的光驱动调制器铺平了道路。