Suppr超能文献

有源可调谐纳米光子超材料

Active and tunable nanophotonic metamaterials.

作者信息

Fan Kebin, Averitt Richard D, Padilla Willie J

机构信息

School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.

Department of Physics, UC San Diego, La Jolla, CA 92093, USA.

出版信息

Nanophotonics. 2022 Aug 17;11(17):3769-3803. doi: 10.1515/nanoph-2022-0188. eCollection 2022 Sep.

Abstract

Metamaterials enable subwavelength tailoring of light-matter interactions, driving fundamental discoveries which fuel novel applications in areas ranging from compressed sensing to quantum engineering. Importantly, the metallic and dielectric resonators from which static metamaterials are comprised present an open architecture amenable to materials integration. Thus, incorporating responsive materials such as semiconductors, liquid crystals, phase-change materials, or quantum materials (e.g., superconductors, 2D materials, etc.) imbue metamaterials with dynamic properties, facilitating the development of active and tunable devices harboring enhanced or even entirely novel electromagnetic functionality. Ultimately, active control derives from the ability to craft the local electromagnetic fields; accomplished using a host of external stimuli to modify the electronic or optical properties of the responsive materials embedded into the active regions of the subwavelength resonators. We provide a broad overview of this frontier area of metamaterials research, introducing fundamental concepts and presenting control strategies that include electronic, optical, mechanical, thermal, and magnetic stimuli. The examples presented range from microwave to visible wavelengths, utilizing a wide range of materials to realize spatial light modulators, effective nonlinear media, on-demand optics, and polarimetric imaging as but a few examples. Often, active and tunable nanophotonic metamaterials yield an emergent electromagnetic response that is more than the sum of the parts, providing reconfigurable or real-time control of the amplitude, phase, wavevector, polarization, and frequency of light. The examples to date are impressive, setting the stage for future advances that are likely to impact holography, beyond 5G communications, imaging, and quantum sensing and transduction.

摘要

超材料能够实现光与物质相互作用的亚波长定制,推动了一些基础发现,这些发现为从压缩感知到量子工程等领域的新应用提供了助力。重要的是,构成静态超材料的金属和电介质谐振器呈现出一种开放架构,便于进行材料集成。因此,将诸如半导体、液晶、相变材料或量子材料(例如超导体、二维材料等)等响应材料纳入超材料中,会赋予超材料动态特性,有助于开发具有增强甚至全新电磁功能的有源和可调谐器件。最终,有源控制源于能够精心设计局部电磁场;这是通过一系列外部刺激来实现的,这些刺激用于改变嵌入亚波长谐振器有源区域的响应材料的电子或光学特性。我们对超材料研究的这一前沿领域进行了广泛概述,介绍了基本概念并展示了包括电子、光学、机械、热和磁刺激在内的控制策略。所举例子涵盖从微波到可见光波长范围,利用多种材料实现了空间光调制器、有效的非线性介质、按需光学器件和偏振成像等仅几个例子。通常,有源和可调谐的纳米光子超材料会产生一种涌现的电磁响应,这种响应不仅仅是各部分的总和,能够对光的幅度、相位、波矢、偏振和频率进行可重构或实时控制。迄今为止的例子令人印象深刻,为未来可能影响全息术、5G 以上通信、成像以及量子传感与转导的进展奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b785/11501849/a519d47ccb0b/j_nanoph-2022-0188_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验