Department of Bioengineering, Rice University, Houston, TX, USA.
Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
Nat Mater. 2024 Jan;23(1):139-146. doi: 10.1038/s41563-023-01680-4. Epub 2023 Oct 9.
Magnetoelectric materials convert magnetic fields into electric fields. These materials are often used in wireless electronic and biomedical applications. For example, magnetoelectrics could enable the remote stimulation of neural tissue, but the optimal resonance frequencies are typically too high to stimulate neural activity. Here we describe a self-rectifying magnetoelectric metamaterial for a precisely timed neural stimulation. This metamaterial relies on nonlinear charge transport across semiconductor layers that allow the material to generate a steady bias voltage in the presence of an alternating magnetic field. We generate arbitrary pulse sequences with time-averaged voltage biases in excess of 2 V. As a result, we can use magnetoelectric nonlinear metamaterials to wirelessly stimulate peripheral nerves to restore a sensory reflex in an anaesthetized rat model and restore signal propagation in a severed nerve with latencies of less than 5 ms. Overall, these results showing the rational design of magnetoelectric metamaterials support applications in advanced biotechnology and electronics.
磁电材料将磁场转换为电场。这些材料常用于无线电子和生物医学应用。例如,磁电材料可以实现对神经组织的远程刺激,但最佳的共振频率通常太高而无法刺激神经活动。在这里,我们描述了一种用于精确定时神经刺激的自整流磁电超材料。这种超材料依赖于半导体层中的非线性电荷输运,使材料在交变磁场存在的情况下产生稳定的偏置电压。我们在超过 2V 的平均电压偏置下生成任意脉冲序列。结果,我们可以使用磁电非线性超材料无线刺激周围神经,在麻醉大鼠模型中恢复感觉反射,并在潜伏期小于 5ms 的情况下恢复切断神经的信号传输。总的来说,这些结果表明磁电超材料的合理设计支持在先进生物技术和电子领域的应用。