Suppr超能文献

利用扩展整数时间序列模型重新分析 SARS-CoV-2 序列:毛里求斯 COVID-19 现状评估。

Re-analyzing the SARS-CoV-2 series using an extended integer-valued time series models: A situational assessment of the COVID-19 in Mauritius.

机构信息

Statistics Mauritius, Ministry of Finance, Economic Planning and Development, Port Louis, Mauritius.

Department of Economics and Statistics, University of Mauritius, Moka, Mauritius.

出版信息

PLoS One. 2022 Feb 8;17(2):e0263515. doi: 10.1371/journal.pone.0263515. eCollection 2022.

Abstract

This paper proposes some high-ordered integer-valued auto-regressive time series process of order p (INAR(p)) with Zero-Inflated and Poisson-mixtures innovation distributions, wherein the predictor functions in these mentioned distributions allow for covariate specification, in particular, time-dependent covariates. The proposed time series structures are tested suitable to model the SARs-CoV-2 series in Mauritius which demonstrates excess zeros and hence significant over-dispersion with non-stationary trend. In addition, the INAR models allow the assessment of possible causes of COVID-19 in Mauritius. The results illustrate that the event of Vaccination and COVID-19 Stringency index are the most influential factors that can reduce the locally acquired COVID-19 cases and ultimately, the associated death cases. Moreover, the INAR(7) with Zero-inflated Negative Binomial innovations provides the best fitting and reliable Root Mean Square Errors, based on some short term forecasts. Undeniably, these information will hugely be useful to Mauritian authorities for implementation of comprehensive policies.

摘要

本文提出了一些具有零膨胀和泊松混合创新分布的高阶整数自回归时间序列过程 INAR(p),其中这些分布中的预测函数允许协变量指定,特别是时变协变量。所提出的时间序列结构适合于对毛里求斯的 SARs-CoV-2 序列进行建模,该序列显示出过多的零值,因此具有显著的过分散性和非平稳趋势。此外,INAR 模型允许评估毛里求斯 COVID-19 的可能原因。结果表明,接种疫苗和 COVID-19 严格指数是最能减少当地 COVID-19 病例并最终减少相关死亡病例的因素。此外,基于一些短期预测,具有零膨胀负二项式创新的 INAR(7) 提供了最佳拟合和可靠的均方根误差。不可否认,这些信息将对毛里求斯当局实施全面政策有很大帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d64/8824322/2b009d076444/pone.0263515.g001.jpg

相似文献

2
Re-visiting the COVID-19 analysis using the class of high ordered integer-valued time series models with harmonic features.
Healthc Anal (N Y). 2022 Nov;2:100086. doi: 10.1016/j.health.2022.100086. Epub 2022 Aug 9.
3
Statistical modelling of COVID-19 and drug data via an INAR(1) process with a recent thinning operator and cosine Poisson innovations.
Int J Biostat. 2022 Oct 28;19(2):473-488. doi: 10.1515/ijb-2022-0053. eCollection 2023 Nov 1.
4
Studying the trend of the novel coronavirus series in Mauritius and its implications.
PLoS One. 2020 Jul 10;15(7):e0235730. doi: 10.1371/journal.pone.0235730. eCollection 2020.
5
Modeling Medical Data by Flexible Integer-Valued AR(1) Process with Zero-and-One-Inflated Geometric Innovations.
Iran J Sci Technol Trans A Sci. 2022;46(3):891-906. doi: 10.1007/s40995-022-01297-3. Epub 2022 May 23.
6
Zero-Inflated Time Series Modelling of COVID-19 Deaths in Ghana.
J Environ Public Health. 2021 Apr 30;2021:5543977. doi: 10.1155/2021/5543977. eCollection 2021.
7
The balanced discrete triplet Lindley model and its INAR(1) extension: properties and COVID-19 applications.
Int J Biostat. 2022 Nov 24;19(2):489-516. doi: 10.1515/ijb-2022-0001. eCollection 2023 Nov 1.
8
A first-order binomial-mixed Poisson integer-valued autoregressive model with serially dependent innovations.
J Appl Stat. 2021 Nov 1;50(2):352-369. doi: 10.1080/02664763.2021.1993798. eCollection 2023.
9
An ensemble approach improves the prediction of the COVID-19 pandemic in South Korea.
J Glob Health. 2025 Mar 28;15:04079. doi: 10.7189/jogh.15.04079.
10
Copula-based Markov zero-inflated count time series models with application.
J Appl Stat. 2020 Apr 3;48(5):786-803. doi: 10.1080/02664763.2020.1748581. eCollection 2021.

引用本文的文献

1
Re-visiting the COVID-19 analysis using the class of high ordered integer-valued time series models with harmonic features.
Healthc Anal (N Y). 2022 Nov;2:100086. doi: 10.1016/j.health.2022.100086. Epub 2022 Aug 9.
2
Predicting COVID-19 Cases in South Korea Using Stringency and Niño Sea Surface Temperature Indices.
Front Public Health. 2022 Jun 3;10:871354. doi: 10.3389/fpubh.2022.871354. eCollection 2022.

本文引用的文献

1
The cosine geometric distribution with count data modeling.
J Appl Stat. 2020 Jan 9;48(1):124-137. doi: 10.1080/02664763.2019.1711364. eCollection 2021.
4
5
Key success factors of Mauritius in the fight against COVID-19.
BMJ Glob Health. 2021 Mar;6(3). doi: 10.1136/bmjgh-2021-005372.
6
Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence.
PLoS One. 2020 Nov 11;15(11):e0242128. doi: 10.1371/journal.pone.0242128. eCollection 2020.
7
The reproduction number of COVID-19 and its correlation with public health interventions.
Comput Mech. 2020;66(4):1035-1050. doi: 10.1007/s00466-020-01880-8. Epub 2020 Jul 28.
8
Effects of Weather on Coronavirus Pandemic.
Int J Environ Res Public Health. 2020 Jul 27;17(15):5399. doi: 10.3390/ijerph17155399.
10
Studying the trend of the novel coronavirus series in Mauritius and its implications.
PLoS One. 2020 Jul 10;15(7):e0235730. doi: 10.1371/journal.pone.0235730. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验