Suppr超能文献

关于构建中国地方政府债务风险预警体系的几点探讨。

Several explorations on how to construct an early warning system for local government debt risk in China.

机构信息

Experimental Teaching Centre, Hubei University of Economics, Wuhan, Hubei, China.

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, Hubei, China.

出版信息

PLoS One. 2022 Feb 8;17(2):e0263391. doi: 10.1371/journal.pone.0263391. eCollection 2022.

Abstract

This paper aims to explore several ways to construct a scientific and comprehensive early warning system (EWS) for local government debt risk in China. In order to achieve this goal, this paper studies the local government debt risk from multiple perspectives, i.e., individual risk, contagion risk, static risk and dynamic risk. Firstly, taking China's 30 provinces over the period of 2010~ 2018 as a sample, this paper establishes early warning indicators for individual risk of local government debt, and uses the network model to establish early warning indicators for contagion risk of local government debt. Then, this paper applies the criteria importance though intercrieria correlation (CRITIC) method and coefficient of variation method to obtain the proxy variable Ⅰ, which combines the above two risks. Secondly, based on the proxy variable Ⅰ, both the Markov-switching autoregressive (MS-AR) model and coefficient of variation method are used to obtain the proxy variable Ⅱ, which comprehensively considers the individual risk, contagion risk, static risk and dynamic risk of local government debt. Finally, machine learning algorithms are adopted to generalize the EWS designed in this paper. The results show that: (1) From different perspectives of local government debt risk, the list of provinces that require early warning is different; (2) The support vector machines can well generalize our EWS.

摘要

本文旨在探讨构建中国地方政府债务风险科学全面预警体系(EWS)的几种方法。为实现这一目标,本文从个体风险、传染风险、静态风险和动态风险等多个角度对地方政府债务风险进行研究。首先,本文以 2010 年至 2018 年期间的中国 30 个省份为样本,建立地方政府债务个体风险预警指标,并利用网络模型建立地方政府债务传染风险预警指标。然后,本文运用准则重要性通过互相关(CRITIC)方法和变异系数方法得到组合上述两种风险的代理变量Ⅰ。其次,基于代理变量Ⅰ,本文同时运用马尔科夫转换自回归(MS-AR)模型和变异系数方法得到综合考虑地方政府债务个体风险、传染风险、静态风险和动态风险的代理变量Ⅱ。最后,采用机器学习算法对本文设计的 EWS 进行泛化。结果表明:(1)从地方政府债务风险的不同视角来看,需要预警的省份名单不同;(2)支持向量机能很好地泛化我们的 EWS。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验