From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Invest Radiol. 2022 Jul 1;57(7):488-493. doi: 10.1097/RLI.0000000000000860. Epub 2022 Feb 9.
The aim of this study was to assess the accuracy of virtual noncontrast (VNC) images of the liver in a phantom and patients using dual-source photon-counting detector computed tomography (PCD-CT).
An anthropomorphic abdominal phantom with a liver insert containing liver parenchyma (1.4 mgI/mL) and 19 liver lesions (iodine content 0-5 mgI/mL) was imaged on a clinical dual-source PCD-CT (tube voltage 120 kV) and in the dual-energy mode on a dual-source energy-integrating detector (EID) CT (tube voltage combinations, 80/Sn150 kV, 90/Sn150 kV, and 100/Sn150 kV). Rings of fat-equivalent material were added to the phantom to emulate 3 sizes (small, medium, large). Each setup was imaged at 3 different radiation doses (volume CT dose index: 5, 10, and 15 mGy). Virtual noncontrast images were reconstructed and CT attenuation was measured in each lesion and liver parenchyma. The absolute error of CT attenuation (VNCerror) was calculated using the phantom specifications as reference. In addition, 15 patients with hypodense liver lesions who were clinically scanned on PCD-CT were retrospectively included. Attenuation values in lesions and liver parenchyma in VNC images reconstructed from portal venous phase CT were compared with true noncontrast images. Statistical analysis included analysis of variance with post hoc t tests and generalized linear models to assess the impact of various variables (dose, patient size, base material, iodine content, and scanner/scan mode) on quantification accuracy.
In the phantom, the overall mean VNCerror for PCD-CT was 4.1 ± 3.9 HU. The overall mean VNCerror for EID-CT was 7.5 ± 5, 6.3 ± 4.7, and 6.7 ± 4.8 HU for 80/Sn150 kV, 90/Sn150 kV, and 100/Sn150 kV, respectively, with the VNCerror of EID-CT being significantly higher at all tube voltage settings (P < 0.001), even after adjusting for dose, size, iodine content of the lesion, and attenuation of base material. For PCD-CT, a smaller phantom size was associated with higher quantification accuracy (P = 0.007-0.046), whereas radiation dose did not impact accuracy (P > 0.126). For EID-CT, but not for PCD-CT, VNCerror increased with lesion iodine content (P < 0.001). In patients, there was no difference in attenuation measured on true noncontrast and VNC images (P = 0.093), with a mean VNCerror of 3.7 ± 2.2 HU.
Photon-counting detector CT allows for the reconstruction of VNC images of the liver both in a phantom and in patients with accurate attenuation values, being independent of dose, attenuation of base material, and liver iodine content.
本研究旨在评估基于双源光子计数探测器 CT(PCD-CT)的虚拟平扫(VNC)肝脏图像在体模和患者中的准确性。
在临床双源 PCD-CT(管电压 120kV)和双源能量积分探测器(EID)CT 的双能量模式下(管电压组合:80/Sn150kV、90/Sn150kV 和 100/Sn150kV),对含有肝脏实质(1.4mgI/mL)和 19 个肝脏病变(碘含量 0-5mgI/mL)的肝脏插入物的人体腹部体模进行成像。在体模中添加了脂肪等效材料环,以模拟 3 种大小(小、中、大)。每种设置均在 3 种不同的辐射剂量(容积 CT 剂量指数:5、10 和 15mGy)下进行成像。重建虚拟平扫图像,并测量每个病变和肝脏实质的 CT 衰减值。使用体模规格作为参考,计算 CT 衰减的绝对误差(VNCerror)。此外,回顾性纳入了 15 名经 PCD-CT 临床扫描有低衰减肝脏病变的患者。比较门静脉期 CT 重建的 VNC 图像中的病变和肝脏实质的衰减值与真实平扫图像。统计分析包括方差分析和事后 t 检验以及广义线性模型,以评估各种变量(剂量、患者体型、基础材料、碘含量和扫描仪/扫描模式)对定量准确性的影响。
在体模中,PCD-CT 的总体平均 VNCerror 为 4.1±3.9HU。EID-CT 的总体平均 VNCerror 分别为 7.5±5、6.3±4.7 和 6.7±4.8HU,80/Sn150kV、90/Sn150kV 和 100/Sn150kV 的 EID-CT 的 VNCerror 明显更高(所有管电压设置,P<0.001),即使在调整了剂量、大小、病变碘含量和基础材料衰减后也是如此。对于 PCD-CT,较小的体模尺寸与更高的定量准确性相关(P=0.007-0.046),而辐射剂量对准确性没有影响(P>0.126)。对于 EID-CT,但不是 PCD-CT,VNCerror 随病变碘含量增加而增加(P<0.001)。在患者中,真实平扫和 VNC 图像上的衰减值无差异(P=0.093),平均 VNCerror 为 3.7±2.2HU。
光子计数探测器 CT 可在体模和患者中重建具有准确衰减值的肝脏 VNC 图像,其不受剂量、基础材料衰减和肝脏碘含量的影响。