Matsui Takanori, Suzuki Kanoko, Ando Kyota, Kitai Yuya, Haga Chihiro, Masuhara Naoki, Kawakubo Shun
Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 Japan.
Department of Architecture, Faculty of Engineering and Design, Hosei University, 2-33 Ichigayatamachi, Shinjuku, Tokyo 162-0843 Japan.
Sustain Sci. 2022;17(3):969-985. doi: 10.1007/s11625-022-01093-3. Epub 2022 Feb 4.
Sharing successful practices with other stakeholders is important for achieving SDGs. In this study, with a deep-learning natural language processing model, bidirectional encoder representations from transformers (BERT), the authors aimed to build (1) a classifier that enables semantic mapping of practices and issues in the SDGs context, (2) a visualizing method of SDGs nexus based on co-occurrence of goals (3) a matchmaking process between local issues and initiatives that may embody solutions. A data frame was built using documents published by official organizations and multi-labels corresponding to SDGs. A pretrained Japanese BERT model was fine-tuned on a multi-label text classification task, while nested cross-validation was conducted to optimize the hyperparameters and estimate cross-validation accuracy. A system was then developed to visualize the co-occurrence of SDGs and to couple the stakeholders by evaluating embedded vectors of local challenges and solutions. The paper concludes with a discussion of four future perspectives to improve the natural language processing system. This intelligent information system is expected to help stakeholders take action to achieve the sustainable development goals.
The online version contains supplementary material available at 10.1007/s11625-022-01093-3.
与其他利益相关者分享成功实践对于实现可持续发展目标至关重要。在本研究中,作者使用深度学习自然语言处理模型——来自变换器的双向编码器表征(BERT),旨在构建:(1)一个能够在可持续发展目标背景下对实践和问题进行语义映射的分类器;(2)一种基于目标共同出现情况的可持续发展目标关联可视化方法;(3)一个将地方问题与可能体现解决方案的举措进行匹配的过程。使用官方组织发布的文件和与可持续发展目标相对应的多标签构建了一个数据框。在多标签文本分类任务上对预训练的日语BERT模型进行了微调,同时进行了嵌套交叉验证以优化超参数并估计交叉验证准确率。然后开发了一个系统来可视化可持续发展目标的共同出现情况,并通过评估地方挑战和解决方案的嵌入向量来将利益相关者联系起来。本文最后讨论了改进自然语言处理系统的四个未来展望。这个智能信息系统有望帮助利益相关者采取行动实现可持续发展目标。
在线版本包含可在10.1007/s11625 - 022 - 01093 - 3获取的补充材料。