University of Maryland School of Medicine Departments of Neurology and Pharmacology, Baltimore, MD 21201, USA.
Clinic for Special Children, Strasburg, PA 17579, USA.
Brain. 2022 Nov 21;145(11):3872-3885. doi: 10.1093/brain/awac044.
Mutations in nitrogen permease regulator-like 3 (NPRL3), a component of the GATOR1 complex within the mTOR pathway, are associated with epilepsy and malformations of cortical development. Little is known about the effects of NPRL3 loss on neuronal mTOR signalling and morphology, or cerebral cortical development and seizure susceptibility. We report the clinical phenotypic spectrum of a founder NPRL3 pedigree (c.349delG, p.Glu117LysFS; n = 133) among Old Order Mennonites dating to 1727. Next, as a strategy to define the role of NPRL3 in cortical development, CRISPR/Cas9 Nprl3 knockout in Neuro2a cells in vitro and in foetal mouse brain in vivo was used to assess the effects of Nprl3 knockout on mTOR activation, subcellular mTOR localization, nutrient signalling, cell morphology and aggregation, cerebral cortical cytoarchitecture and network integrity. The NPRL3 pedigree exhibited an epilepsy penetrance of 28% and heterogeneous clinical phenotypes with a range of epilepsy semiologies, i.e. focal or generalized onset, brain imaging abnormalities, i.e. polymicrogyria, focal cortical dysplasia or normal imaging, and EEG findings, e.g. focal, multi-focal or generalized spikes, focal or generalized slowing. Whole exome analysis comparing a seizure-free group (n = 37) to those with epilepsy (n = 24) to search for gene modifiers for epilepsy did not identify a unique genetic modifier that explained the variability in seizure penetrance in this cohort. Nprl3 knockout in vitro caused mTOR pathway hyperactivation, cell soma enlargement and the formation of cellular aggregates seen in time-lapse videos that were prevented with the mTOR inhibitors rapamycin or torin1. In Nprl3 knockout cells, mTOR remained localized on the lysosome in a constitutively active conformation, as evidenced by phosphorylation of ribosomal S6 and 4E-BP1 proteins, even under nutrient starvation (amino acid-free) conditions, demonstrating that Nprl3 loss decouples mTOR activation from neuronal metabolic state. To model human malformations of cortical development associated with NPRL3 variants, we created a focal Nprl3 knockout in foetal mouse cortex by in utero electroporation and found altered cortical lamination and white matter heterotopic neurons, effects which were prevented with rapamycin treatment. EEG recordings showed network hyperexcitability and reduced seizure threshold to pentylenetetrazol treatment. NPRL3 variants are linked to a highly variable clinical phenotype which we propose results from mTOR-dependent effects on cell structure, cortical development and network organization.
NPRL3 突变(一种 mTOR 通路中 GATOR1 复合物的组成部分)与癫痫和皮质发育畸形有关。目前对于 NPRL3 缺失对神经元 mTOR 信号和形态的影响,以及大脑皮质发育和癫痫易感性知之甚少。我们报告了一个可以追溯到 1727 年的老秩序门诺派 NPRL3 种系(c.349delG,p.Glu117LysFS;n=133)的临床表型谱。接下来,作为定义 NPRL3 在皮质发育中作用的一种策略,我们在体外的 Neuro2a 细胞和体内的胎鼠脑中使用 CRISPR/Cas9 Nprl3 敲除来评估 Nprl3 敲除对 mTOR 激活、亚细胞 mTOR 定位、营养信号、细胞形态和聚集、大脑皮质细胞结构和网络完整性的影响。NPRL3 种系的癫痫外显率为 28%,表现出异质性的临床表型,包括局灶性或全面性发作、脑成像异常,如多微小脑回、局灶性皮质发育不良或正常成像,以及脑电图表现,如局灶性、多灶性或全面性棘波、局灶性或全面性减慢。对无癫痫发作组(n=37)与癫痫发作组(n=24)进行全外显子组分析,以寻找癫痫的基因修饰物,没有发现一个独特的遗传修饰物可以解释该队列中癫痫外显率的变异性。体外的 Nprl3 敲除导致 mTOR 通路过度激活、细胞体增大和细胞聚集,在延时视频中可以看到这些变化,而 rapamycin 或 torin1 这两种 mTOR 抑制剂可以阻止这些变化。在 Nprl3 敲除细胞中,mTOR 仍然定位于溶酶体上,处于持续激活的构象,这一点可以从核糖体 S6 和 4E-BP1 蛋白的磷酸化得到证明,即使在营养饥饿(无氨基酸)条件下也是如此,这表明 Nprl3 缺失使 mTOR 激活与神经元代谢状态脱耦联。为了模拟与 NPRL3 变体相关的人类皮质发育畸形,我们通过在体电穿孔在胎鼠皮质中创建了一个局灶性的 Nprl3 敲除,并发现皮质分层和白质异位神经元发生改变,而 rapamycin 处理可以预防这些变化。脑电图记录显示网络过度兴奋,戊四氮处理后的癫痫发作阈值降低。NPRL3 变体与高度可变的临床表型相关,我们提出这是由 mTOR 对细胞结构、皮质发育和网络组织的依赖影响导致的。