Elziny Soad, Sran Sahibjot, Yoon Hyojung, Corrigan Rachel R, Page John, Ringland Amanda, Lanier Anna, Lapidus Sara, Foreman James, Heinzen Erin L, Iffland Philip, Crino Peter B, Bedrosian Tracy A
Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
bioRxiv. 2023 Nov 30:2023.11.29.569243. doi: 10.1101/2023.11.29.569243.
Brain somatic variants in are associated with clinically drug-resistant epilepsy and developmental brain malformations, including mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). encodes a uridine diphosphate galactose translocator that is essential for protein glycosylation; however, the neurodevelopmental mechanisms by which disruption leads to clinical and histopathological features remain unspecified. We hypothesized that focal knockout (KO) or knockdown (KD) of in the developing mouse cortex would disrupt cerebral cortical development through altered neuronal migration and cause changes in network excitability. We used electroporation (IUE) to introduce CRISPR/Cas9 and targeted guide RNAs or short-hairpin RNAs to achieve KO or KD, respectively, during early corticogenesis. Following KO or KD, we observed disrupted radial migration of transfected neurons evidenced by heterotopic cells located in lower cortical layers and in the sub-cortical white matter. KO in neurons did not induce changes in oligodendrocyte number, suggesting that the oligodendroglial hyperplasia observed in MOGHE originates from distinct cell autonomous effects. Spontaneous seizures were not observed, but intracranial EEG recordings after focal KO showed a reduced seizure threshold following pentylenetetrazol injection. These results demonstrate that KO or KD disrupts corticogenesis through altered neuronal migration.
中的脑体细胞变异与临床耐药性癫痫和发育性脑畸形有关,包括癫痫中伴有少突胶质细胞增生的轻度皮质发育畸形(MOGHE)。编码一种对蛋白质糖基化至关重要的尿苷二磷酸半乳糖转运体;然而,破坏导致临床和组织病理学特征的神经发育机制仍未明确。我们假设,在发育中的小鼠皮质中局部敲除(KO)或敲低(KD)会通过改变神经元迁移扰乱大脑皮质发育,并导致网络兴奋性改变。我们使用体内电穿孔(IUE)在早期皮质发生过程中分别引入CRISPR/Cas9和靶向引导RNA或短发夹RNA,以实现的KO或KD。在KO或KD后,我们观察到转染神经元的放射状迁移受到扰乱,表现为位于皮质下层和皮质下白质中的异位细胞。神经元中的KO并未诱导少突胶质细胞数量的变化,这表明在MOGHE中观察到的少突胶质细胞增生源于不同的细胞自主效应。未观察到自发性癫痫发作,但局部KO后的颅内脑电图记录显示,注射戊四氮后癫痫阈值降低。这些结果表明,KO或KD通过改变神经元迁移扰乱皮质发生。