Suppr超能文献

对住院 COVID-19 患者的动态建模揭示了与疾病状态相关的风险因素。

Dynamic modeling of hospitalized COVID-19 patients reveals disease state-dependent risk factors.

机构信息

Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA.

Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA.

出版信息

J Am Med Inform Assoc. 2022 Apr 13;29(5):864-872. doi: 10.1093/jamia/ocac012.

Abstract

OBJECTIVE

The study sought to investigate the disease state-dependent risk profiles of patient demographics and medical comorbidities associated with adverse outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections.

MATERIALS AND METHODS

A covariate-dependent, continuous-time hidden Markov model with 4 states (moderate, severe, discharged, and deceased) was used to model the dynamic progression of COVID-19 during the course of hospitalization. All model parameters were estimated using the electronic health records of 1362 patients from ProMedica Health System admitted between March 20, 2020 and December 29, 2020 with a positive nasopharyngeal PCR test for SARS-CoV-2. Demographic characteristics, comorbidities, vital signs, and laboratory test results were retrospectively evaluated to infer a patient's clinical progression.

RESULTS

The association between patient-level covariates and risk of progression was found to be disease state dependent. Specifically, while being male, being Black or having a medical comorbidity were all associated with an increased risk of progressing from the moderate disease state to the severe disease state, these same factors were associated with a decreased risk of progressing from the severe disease state to the deceased state.

DISCUSSION

Recent studies have not included analyses of the temporal progression of COVID-19, making the current study a unique modeling-based approach to understand the dynamics of COVID-19 in hospitalized patients.

CONCLUSION

Dynamic risk stratification models have the potential to improve clinical outcomes not only in COVID-19, but also in a myriad of other acute and chronic diseases that, to date, have largely been assessed only by static modeling techniques.

摘要

目的

本研究旨在探讨与严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)感染不良结局相关的患者人口统计学特征和合并症的疾病状态依赖性风险特征。

材料和方法

使用具有 4 个状态(中度、重度、出院和死亡)的协变量依赖连续时间隐马尔可夫模型来模拟 COVID-19 在住院期间的动态进展。使用 2020 年 3 月 20 日至 2020 年 12 月 29 日期间 ProMedica 健康系统收治的 1362 名 SARS-CoV-2 鼻咽 PCR 检测呈阳性的患者的电子健康记录,估计所有模型参数。回顾性评估人口统计学特征、合并症、生命体征和实验室检查结果,以推断患者的临床进展。

结果

发现患者水平协变量与进展风险之间的关联取决于疾病状态。具体而言,虽然男性、黑人和合并症与从中度疾病状态进展为重度疾病状态的风险增加相关,但这些相同的因素与从重度疾病状态进展为死亡状态的风险降低相关。

讨论

最近的研究并未包括对 COVID-19 时间进展的分析,因此目前的研究是一种独特的基于建模的方法,用于了解住院患者 COVID-19 的动态。

结论

动态风险分层模型不仅有可能改善 COVID-19 的临床结局,而且还有可能改善迄今为止主要通过静态建模技术评估的大量其他急性和慢性疾病的临床结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92b9/9006701/116847378fed/ocac012f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验