Suppr超能文献

使用 UV/Fe 体系在有氧和无氧条件下降解全氟烷基物质。

Degradation of perfluoroalkyl substances using UV/Fe system with and without the presence of oxygen.

机构信息

School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, Carbondale, IL, USA.

Materials Technology Center, Southern Illinois University, Carbondale, IL, USA.

出版信息

Environ Technol. 2023 Aug;44(18):2725-2736. doi: 10.1080/09593330.2022.2041104. Epub 2022 Feb 21.

Abstract

The wide presence of per- and poly-fluoroalkyl substances (PFAS) in the environment is a global concern, thus their degradation is an imminent task. In this study, oxidative and/or reductive degradation of three representative PFAS - perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonate (PFOS) was achieved using nanoscale zero-valent iron (Fe NPs) under ultraviolet (UV) light, both with and without the presence of oxygen. Higher degradation and defluorination rates were obtained for a longer chain PFNA compared to PFOA, and a higher removal of PFAS was achieved without the presence of O compared to that with O. The degradation followed first-order reaction kinetics, and obtained the highest rates of 97.6, >99.9, and 98.5% without the presence of O for PFOA, PFNA, and PFOS, respectively. The degradation rates increased with an increase in the nanoparticle concentrations in the range of 1-100 mg/L. In addition to fluoride ions, shorter chain perfluorocarboxylic acids (PFCAs) were detected as the main intermediates during PFAS degradation; PFHpS and 6:2 FTS were also detected during PFOS degradation. Hydroxyl radicals (·OH) and superoxide radicals (O) were not involved in the degradation of PFOA, but likely involved in the degradation of PFOS. Emerging contaminants PFAS degradation using the UV/Fe system is a cost-effective technology owing to the low cost and recyclability of Fe nanomaterials, low energy consumption in the system, and its capability to degrade PFAS both with and without the presence of oxygen. This technology can be potentially applied to treat PFAS-contaminated waters in the environment.

摘要

全氟和多氟烷基物质(PFAS)在环境中的广泛存在是一个全球性的关注点,因此它们的降解是当务之急。在这项研究中,使用纳米零价铁(Fe NPs)在紫外线(UV)光下,在有氧和无氧的情况下,实现了三种代表性的 PFAS——全氟辛酸(PFOA)、全氟壬酸(PFNA)和全氟辛烷磺酸(PFOS)的氧化和/或还原降解。与 PFOA 相比,长链的 PFNA 具有更高的降解和脱氟率,并且在无氧条件下比有氧条件下可以实现更高的 PFAS 去除率。降解遵循一级反应动力学,在无氧条件下,PFOA、PFNA 和 PFOS 的去除率分别高达 97.6%、>99.9%和 98.5%。随着纳米颗粒浓度在 1-100 mg/L 范围内的增加,降解速率也随之增加。除了氟离子外,在 PFAS 降解过程中还检测到了较短链的全氟羧酸(PFCAs)作为主要中间体;在 PFOS 降解过程中还检测到了 PFHpS 和 6:2 FTS。羟基自由基(·OH)和超氧自由基(O)不参与 PFOA 的降解,但可能参与 PFOS 的降解。由于 Fe 纳米材料成本低、可回收,系统能耗低,且具有有氧和无氧条件下均可降解 PFAS 的能力,因此利用 UV/Fe 系统降解新兴污染物 PFAS 是一种具有成本效益的技术。该技术有望应用于处理环境中受 PFAS 污染的水。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验