IEEE Trans Med Imaging. 2022 Jul;41(7):1897-1908. doi: 10.1109/TMI.2022.3150435. Epub 2022 Jun 30.
The automatic detection of polyps across colonoscopy and Wireless Capsule Endoscopy (WCE) datasets is crucial for early diagnosis and curation of colorectal cancer. Existing deep learning approaches either require mass training data collected from multiple sites or use unsupervised domain adaptation (UDA) technique with labeled source data. However, these methods are not applicable when the data is not accessible due to privacy concerns or data storage limitations. Aiming to achieve source-free domain adaptive polyp detection, we propose a consistency based model that utilizes Source Model as Proxy Teacher (SMPT) with only a transferable pretrained model and unlabeled target data. SMPT first transfers the stored domain-invariant knowledge in the pretrained source model to the target model via Source Knowledge Distillation (SKD), then uses Proxy Teacher Rectification (PTR) to rectify the source model with temporal ensemble of the target model. Moreover, to alleviate the biased knowledge caused by domain gaps, we propose Uncertainty-Guided Online Bootstrapping (UGOB) to adaptively assign weights for each target image regarding their uncertainty. In addition, we design Source Style Diversification Flow (SSDF) that gradually generates diverse style images and relaxes style-sensitive channels based on source and target information to enhance the robustness of the model towards style variation. The capacities of SMPT and SSDF are further boosted with iterative optimization, constructing a stronger framework SMPT++ for cross-domain polyp detection. Extensive experiments are conducted on five distinct polyp datasets under two types of cross-domain settings. Our proposed method shows the state-of-the-art performance and even outperforms previous UDA approaches that require the source data by a large margin. The source code is available at github.com/CityU-AIM-Group/SFPolypDA.
自动检测结肠镜和无线胶囊内窥镜 (WCE) 数据集中的息肉对于结直肠癌的早期诊断和治疗至关重要。现有的深度学习方法要么需要从多个站点收集大量训练数据,要么使用带有标记源数据的无监督域自适应 (UDA) 技术。然而,当由于隐私问题或数据存储限制而无法访问数据时,这些方法并不适用。为了实现无源域自适应息肉检测,我们提出了一种基于一致性的模型,该模型使用源模型作为代理教师 (SMPT),仅使用可转移的预训练模型和无标记的目标数据。SMPT 首先通过源知识蒸馏 (SKD) 将预训练源模型中存储的域不变知识转移到目标模型中,然后使用代理教师校正 (PTR) 用目标模型的时间集合校正源模型。此外,为了减轻由于域间隙引起的有偏知识,我们提出了不确定性引导在线引导 (UGOB),以根据每个目标图像的不确定性自适应地为其分配权重。此外,我们设计了源样式多样化流 (SSDF),该流基于源和目标信息逐渐生成不同样式的图像,并放松样式敏感通道,以增强模型对样式变化的鲁棒性。SMPT 和 SSDF 的容量通过迭代优化进一步增强,构建了一个更强大的跨域息肉检测框架 SMPT++。在两种跨域设置下,我们在五个不同的息肉数据集上进行了广泛的实验。我们提出的方法在两种跨域设置下的五个不同的息肉数据集上进行了广泛的实验,表现出了最先进的性能,甚至超过了需要源数据的先前 UDA 方法。源代码可在 github.com/CityU-AIM-Group/SFPolypDA 上获得。