Suppr超能文献

将现成的源分割器应用于目标医学图像分割

Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.

作者信息

Liu Xiaofeng, Xing Fangxu, Yang Chao, Fakhri Georges El, Woo Jonghye

机构信息

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114.

Facebook Artificial Intelligence, Boston, MA, 02142.

出版信息

Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.

Abstract

Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to an unlabeled and unseen target domain, which is usually trained on data from both domains. Access to the source domain data at the adaptation stage, however, is often limited, due to data storage or privacy issues. To alleviate this, in this work, we target source free UDA for segmentation, and propose to adapt an "off-the-shelf" segmentation model pre-trained in the source domain to the target domain, with an adaptive batch-wise normalization statistics adaptation framework. Specifically, the domain-specific low-order batch statistics, i.e., mean and variance, are gradually adapted with an exponential momentum decay scheme, while the consistency of domain shareable high-order batch statistics, i.e., scaling and shifting parameters, is explicitly enforced by our optimization objective. The transferability of each channel is adaptively measured first from which to balance the contribution of each channel. Moreover, the proposed source free UDA framework is orthogonal to unsupervised learning methods, e.g., self-entropy minimization, which can thus be simply added on top of our framework. Extensive experiments on the BraTS 2018 database show that our source free UDA framework outperformed existing source-relaxed UDA methods for the cross-subtype UDA segmentation task and yielded comparable results for the cross-modality UDA segmentation task, compared with a supervised UDA methods with the source data.

摘要

无监督域适应(UDA)旨在将从有标签的源域学到的知识转移到无标签且未见过的目标域,通常在来自两个域的数据上进行训练。然而,由于数据存储或隐私问题,在适应阶段访问源域数据往往受到限制。为了缓解这一问题,在这项工作中,我们针对分割任务的无源UDA,并提出使用自适应逐批归一化统计适应框架,将在源域中预训练的“现成”分割模型适配到目标域。具体来说,特定域的低阶批统计量,即均值和方差,采用指数动量衰减方案逐步适应,而域可共享的高阶批统计量,即缩放和偏移参数的一致性,通过我们的优化目标明确强制实现。首先自适应测量每个通道的可迁移性,据此平衡每个通道的贡献。此外,所提出的无源UDA框架与无监督学习方法(例如自熵最小化)正交,因此可以简单地添加到我们的框架之上。在BraTS 2018数据库上进行的大量实验表明,与具有源数据的监督UDA方法相比,我们的无源UDA框架在跨子类型UDA分割任务中优于现有的无源UDA方法,并且在跨模态UDA分割任务中取得了可比的结果。

相似文献

1
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.将现成的源分割器应用于目标医学图像分割
Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.
3
Unsupervised Domain Adaptation for Segmentation with Black-box Source Model.基于黑箱源模型的无监督域自适应分割
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2607895. Epub 2022 Apr 4.
4
Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation.用于脑肿瘤分割的无监督黑箱模型域适应
Front Neurosci. 2022 Jun 2;16:837646. doi: 10.3389/fnins.2022.837646. eCollection 2022.
7
ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with Asymmetric Co-Training.ACT:基于不对称协同训练的半监督域自适应医学图像分割
Med Image Comput Comput Assist Interv. 2022 Sep;13435:66-76. doi: 10.1007/978-3-031-16443-9_7. Epub 2022 Sep 16.

引用本文的文献

5
Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI.用于脑肿瘤磁共振成像中异构结构分割的增量学习
Med Image Comput Comput Assist Interv. 2023 Oct;14221:46-56. doi: 10.1007/978-3-031-43895-0_5. Epub 2023 Oct 1.
6
Source-free unsupervised domain adaptation: A survey.无监督源域自适应:综述。
Neural Netw. 2024 Jun;174:106230. doi: 10.1016/j.neunet.2024.106230. Epub 2024 Mar 11.

本文引用的文献

1
Generative Self-training for Cross-domain Unsupervised Tagged-to-Cine MRI Synthesis.用于跨域无监督标记到电影MRI合成的生成式自训练
Med Image Comput Comput Assist Interv. 2021;12903:138-148. doi: 10.1007/978-3-030-87199-4_13. Epub 2021 Sep 21.
4
A Survey of Unsupervised Deep Domain Adaptation.无监督深度域适应研究
ACM Trans Intell Syst Technol. 2020 Sep;11(5):1-46. doi: 10.1145/3400066. Epub 2020 Jul 5.
7
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验