Suppr超能文献

基于傅里叶风格挖掘的源自由域自适应医学图像分割。

Source free domain adaptation for medical image segmentation with fourier style mining.

机构信息

Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.

Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.

出版信息

Med Image Anal. 2022 Jul;79:102457. doi: 10.1016/j.media.2022.102457. Epub 2022 Apr 12.

Abstract

Unsupervised domain adaptation (UDA) aims to exploit the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled target domain. Existing UDA techniques typically assume that samples from source and target domains are freely accessible during the training. However, it may be impractical to access source images due to privacy concerns, especially in medical imaging scenarios with the patient information. To tackle this issue, we devise a novel source free domain adaptation framework with fourier style mining, where only a well-trained source segmentation model is available for the adaptation to the target domain. Our framework is composed of two stages: a generation stage and an adaptation stage. In the generation stage, we design a Fourier Style Mining (FSM) generator to inverse source-like images through statistic information of the pretrained source model and mutual Fourier Transform. These generated source-like images can provide source data distribution and benefit the domain alignment. In the adaptation stage, we design a Contrastive Domain Distillation (CDD) module to achieve feature-level adaptation, including a domain distillation loss to transfer relation knowledge and a domain contrastive loss to narrow down the domain gap by a self-supervised paradigm. Besides, a Compact-Aware Domain Consistency (CADC) module is proposed to enhance consistency learning by filtering out noisy pseudo labels with shape compactness metric, thus achieving output-level adaptation. Extensive experiments on cross-device and cross-centre datasets are conducted for polyp and prostate segmentation, and our method delivers impressive performance compared with state-of-the-art domain adaptation methods. The source code is available at https://github.com/CityU-AIM-Group/SFDA-FSM.

摘要

无监督领域自适应 (UDA) 旨在利用从带标签源数据集中学到的知识来解决新的无标签目标域中的类似任务。现有的 UDA 技术通常假设在训练过程中可以自由访问源域和目标域的样本。然而,由于隐私问题,特别是在涉及患者信息的医学成像场景中,访问源图像可能不切实际。为了解决这个问题,我们设计了一种新颖的基于傅里叶风格挖掘的无源域自适应框架,其中只有一个经过充分训练的源分割模型可用于适应目标域。我们的框架由两个阶段组成:生成阶段和适应阶段。在生成阶段,我们设计了一个傅里叶风格挖掘 (FSM) 生成器,通过预训练源模型的统计信息和互傅里叶变换来反向生成源样图像。这些生成的源样图像可以提供源数据分布,并有利于域对齐。在适应阶段,我们设计了一个对比域蒸馏 (CDD) 模块来实现特征级别的适应,包括一个域蒸馏损失来传递关系知识和一个域对比损失来通过自监督范式缩小域差距。此外,还提出了一个紧凑感知域一致性 (CADC) 模块,通过形状紧凑度度量来过滤掉嘈杂的伪标签,从而实现输出级别的适应。我们在跨设备和跨中心数据集上进行了广泛的息肉和前列腺分割实验,与最先进的域自适应方法相比,我们的方法取得了令人印象深刻的性能。源代码可在 https://github.com/CityU-AIM-Group/SFDA-FSM 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验