Suppr超能文献

一种具有绝缘体-金属转变通道的三端非易失性铁电开关。

A three-terminal non-volatile ferroelectric switch with an insulator-metal transition channel.

作者信息

Vaidya Jaykumar, Kanthi R S Surya, Alam Shamiul, Amin Nazmul, Aziz Ahmedullah, Shukla Nikhil

机构信息

Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.

Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA.

出版信息

Sci Rep. 2022 Feb 9;12(1):2199. doi: 10.1038/s41598-021-03560-w.

Abstract

Ferroelectrics offer a promising material platform to realize energy-efficient non-volatile memory technology with the FeFET-based implementations being one of the most area-efficient ferroelectric memory architectures. However, the FeFET operation entails a fundamental trade-off between the read and the program operations. To overcome this trade-off, we propose in this work, a novel device concept, Mott-FeFET, that aims to replace the Silicon channel of the FeFET with VO- a material that exhibits an electrically driven insulator-metal phase transition. The Mott-FeFET design, which demonstrates a (ferroelectric) polarization-dependent threshold voltage, enables the read current distinguishability (i.e., the ratio of current sensed when the Mott-FeFET is in state 1 and 0, respectively) to be independent of the program voltage. This enables the device to be programmed at low voltages without affecting the ability to sense/read the state of the device. Our work provides a pathway to realize low-voltage and energy-efficient non-volatile memory solutions.

摘要

铁电材料为实现节能非易失性存储技术提供了一个很有前景的材料平台,基于铁电场效应晶体管(FeFET)的实现方式是面积效率最高的铁电存储器架构之一。然而,FeFET的操作在读取和编程操作之间存在一个基本的权衡。为了克服这种权衡,我们在这项工作中提出了一种新颖的器件概念,即莫特FeFET,其旨在用VO取代FeFET的硅通道,VO是一种表现出电驱动绝缘体-金属相变的材料。莫特FeFET设计展示了一个(铁电)极化相关的阈值电压,使得读取电流的可区分性(即莫特FeFET分别处于状态1和0时所感测到的电流之比)与编程电压无关。这使得该器件能够在低电压下进行编程,而不会影响检测/读取器件状态的能力。我们的工作为实现低电压和节能的非易失性存储解决方案提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39d/8828903/2fe60017900d/41598_2021_3560_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验