Suppr超能文献

基于极端学习机自动编码器和改进 KAZE 特征的眼底图像快速稳健渗出物检测。

Fast and Robust Exudate Detection in Retinal Fundus Images Using Extreme Learning Machine Autoencoders and Modified KAZE Features.

机构信息

Bio-Medical Imaging Laboratory (BIOMIL), Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar, 788010, Assam, India.

Department of Ophthalmology, Silchar Medical College and Hospital, Silchar, 788014, Assam, India.

出版信息

J Digit Imaging. 2022 Jun;35(3):496-513. doi: 10.1007/s10278-022-00587-x. Epub 2022 Feb 9.

Abstract

Diabetic retinopathy(DR) is a health condition that affects the retinal blood vessels(BV) and arises in over half of people living with diabetes. Exudates(EX) are significant indications of DR. Early detection and treatment can prevent vision loss in many cases. EX detection is a challenging problem for ophthalmologists due to its different sizes and elevations as retinal fundus images frequently have irregular illumination and are poorly contrasting. Manual detection of EX is a time-consuming process to diagnose a mass number of diabetic patients. In the domain of signal processing, both SIFT (scale-invariant feature transform) and SURF (speed-up robust feature) methods are predominant in scale-invariant location retrieval and have shown a range of advantages. But, when extended to medical images with corresponding weak contrast between reference features and neighboring areas, these methods cannot differentiate significant features. Considering these, in this paper, a novel method is proposed based on modified KAZE features, which is an emerging technique to extract feature points and extreme learning machine autoencoders(ELMAE) for robust and fast localization of the EX in fundus images. The main stages of the proposed method are pre-processing, OD localization, dimensionality reduction using ELMAE, and EX localization. The proposed method is evaluated based on the freely accessible retinal database DIARETDB0, DIARETDB1, e-Ophtha, MESSIDOR, and local retinal database collected from Silchar Medical College and Hospital(SMCH). The sensitivity, specificity, and accuracy obtained by the proposed method are 96.5%, 96.4%, and 97%, respectively, with the processing time of 3.19 seconds per image. The results of this study are satisfactory with state-of-the-art methods. The results indicate that the approach taken can detect EX with less processing time and accurately from the fundus images.

摘要

糖尿病性视网膜病变(DR)是一种影响视网膜血管(BV)的健康状况,超过一半的糖尿病患者都会出现这种情况。渗出物(EX)是 DR 的重要指征。在许多情况下,早期发现和治疗可以防止视力丧失。由于眼底图像的光照不均匀且对比度差,EX 的检测对眼科医生来说是一个具有挑战性的问题,其大小和高度都不同。手动检测 EX 是一个耗时的过程,无法诊断大量的糖尿病患者。在信号处理领域,SIFT(尺度不变特征变换)和 SURF(加速稳健特征)方法在尺度不变位置检索中占主导地位,并且具有一系列优势。但是,当将其扩展到参考特征与相邻区域之间对比度较弱的医学图像时,这些方法无法区分显著特征。考虑到这些,本文提出了一种基于改进的 KAZE 特征的新方法,该方法是一种用于提取特征点的新兴技术,以及用于稳健和快速定位眼底图像中 EX 的极端学习机自动编码器(ELMAE)。所提出方法的主要阶段包括预处理、OD 定位、使用 ELMAE 的降维以及 EX 定位。该方法基于可访问的视网膜数据库 DIARETDB0、DIARETDB1、e-Ophtha、MESSIDOR 和从 Silchar 医学院和医院(SMCH)收集的本地视网膜数据库进行评估。该方法的灵敏度、特异性和准确性分别为 96.5%、96.4%和 97%,每张图像的处理时间为 3.19 秒。该研究的结果与最先进的方法一样令人满意。结果表明,该方法可以在较短的处理时间内准确地从眼底图像中检测到 EX。

相似文献

1
Fast and Robust Exudate Detection in Retinal Fundus Images Using Extreme Learning Machine Autoencoders and Modified KAZE Features.
J Digit Imaging. 2022 Jun;35(3):496-513. doi: 10.1007/s10278-022-00587-x. Epub 2022 Feb 9.
2
A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
Comput Med Imaging Graph. 2017 Jan;55:78-86. doi: 10.1016/j.compmedimag.2016.09.001. Epub 2016 Sep 15.
3
Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms.
BMC Ophthalmol. 2018 Nov 6;18(1):288. doi: 10.1186/s12886-018-0954-4.
5
Exudate identification in retinal fundus images using precise textural verifications.
Sci Rep. 2023 Feb 17;13(1):2824. doi: 10.1038/s41598-023-29916-y.
7
Automated Detection and Segmentation of Exudates for the Screening of Background Retinopathy.
J Healthc Eng. 2023 Jul 14;2023:4537253. doi: 10.1155/2023/4537253. eCollection 2023.
9
Hard exudates segmentation based on learned initial seeds and iterative graph cut.
Comput Methods Programs Biomed. 2018 May;158:173-183. doi: 10.1016/j.cmpb.2018.02.011. Epub 2018 Feb 20.
10
Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images.
J Med Syst. 2019 May 29;43(7):209. doi: 10.1007/s10916-019-1349-7.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验