Suppr超能文献

发夹状 siRNA 基球形核酸

Hairpin-like siRNA-Based Spherical Nucleic Acids.

机构信息

Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

出版信息

J Am Chem Soc. 2022 Feb 23;144(7):3174-3181. doi: 10.1021/jacs.1c12750. Epub 2022 Feb 10.

Abstract

The therapeutic use of small interfering RNAs (siRNAs) as gene regulation agents has been limited by their poor stability and delivery. Although arranging siRNAs into a spherical nucleic acid (SNA) architecture to form siRNA-SNAs increases their stability and uptake, prototypical siRNA-SNAs consist of a hybridized architecture that causes guide strand dissociation from passenger strands, which limits the delivery of active siRNA duplexes. In this study, a new SNA design that directly attaches both siRNA strands to the SNA core through a single hairpin-shaped molecule to prevent guide strand dissociation is introduced and investigated. This hairpin-like architecture increases the number of siRNA duplexes that can be loaded onto an SNA by 4-fold compared to the original hybridized siRNA-SNA architecture. As a result, the hairpin-like siRNA-SNAs exhibit a 6-fold longer half-life in serum and decreased cytotoxicity. In addition, the hairpin-like siRNA-SNA produces more durable gene knockdown than the hybridized siRNA-SNA. This study shows how the chemistry used to immobilize siRNA on nanoparticles can markedly enhance biological function, and it establishes the hairpin-like architecture as a next-generation SNA construct that will be useful in life science and medical research.

摘要

小干扰 RNA(siRNA)作为基因调控剂的治疗用途受到其稳定性和递送效率差的限制。虽然将 siRNA 排列成球形核酸(SNA)结构以形成 siRNA-SNA 会增加其稳定性和摄取,但原型 siRNA-SNA 由杂交结构组成,导致引导链与过客链解离,从而限制了活性 siRNA 双链体的递送。在这项研究中,引入并研究了一种新的 SNA 设计,该设计通过单个发夹状分子将两条 siRNA 链直接连接到 SNA 核心上,以防止引导链解离。与原始杂交 siRNA-SNA 结构相比,这种发夹状结构将可以加载到 SNA 上的 siRNA 双链体数量增加了 4 倍。结果,发夹状 siRNA-SNA 在血清中的半衰期延长了 6 倍,细胞毒性降低。此外,发夹状 siRNA-SNA 产生的基因敲低作用比杂交 siRNA-SNA 更持久。本研究展示了用于将 siRNA 固定在纳米颗粒上的化学方法如何显著增强生物学功能,并确立了发夹状结构作为下一代 SNA 构建体的地位,这将在生命科学和医学研究中很有用。

相似文献

1
Hairpin-like siRNA-Based Spherical Nucleic Acids.
J Am Chem Soc. 2022 Feb 23;144(7):3174-3181. doi: 10.1021/jacs.1c12750. Epub 2022 Feb 10.
2
Transforming Hairpin-like siRNA-Based Spherical Nucleic Acids into Biocompatible Constructs.
ACS Appl Bio Mater. 2023 Sep 18;6(9):3912-3918. doi: 10.1021/acsabm.3c00574. Epub 2023 Aug 11.
3
The effector mechanism of siRNA spherical nucleic acids.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1312-1320. doi: 10.1073/pnas.1915907117. Epub 2020 Jan 3.
4
DNA nanoclew templated spherical nucleic acids for siRNA delivery.
Chem Commun (Camb). 2018 Apr 5;54(29):3609-3612. doi: 10.1039/C7CC09257A.
5
Using siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation in psoriasis.
J Control Release. 2017 Dec 28;268:259-268. doi: 10.1016/j.jconrel.2017.10.034. Epub 2017 Oct 23.
6
Enhancing Endosomal Escape and Gene Regulation Activity for Spherical Nucleic Acids.
Small. 2024 Mar;20(11):e2306902. doi: 10.1002/smll.202306902. Epub 2023 Nov 6.
7
Investigation of Strand-Selective Interaction of SNA-Modified siRNA with AGO2-MID.
Int J Mol Sci. 2020 Jul 23;21(15):5218. doi: 10.3390/ijms21155218.
10
Enhancement of stability and activity of siRNA by terminal substitution with serinol nucleic acid (SNA).
Chembiochem. 2014 Nov 24;15(17):2549-55. doi: 10.1002/cbic.201402369. Epub 2014 Sep 18.

引用本文的文献

1
Blueprints for Better Drugs: The Structural Revolution in Nanomedicine.
ACS Nano. 2025 May 27;19(20):18889-18901. doi: 10.1021/acsnano.5c06380. Epub 2025 May 13.
3
Cationic Metal-Organic Layer Delivers siRNAs to Overcome Radioresistance and Potentiate Cancer Radiotherapy.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419409. doi: 10.1002/anie.202419409. Epub 2024 Nov 21.
4
In Vivo Interactions of Nucleic Acid Nanostructures With Cells.
Adv Mater. 2025 Jan;37(2):e2314232. doi: 10.1002/adma.202314232. Epub 2024 Sep 12.
5
Recent advances in gene delivery nanoplatforms based on spherical nucleic acids.
J Nanobiotechnology. 2024 Jul 1;22(1):386. doi: 10.1186/s12951-024-02648-5.
6
Extracellular Vesicle Spherical Nucleic Acids.
JACS Au. 2024 May 30;4(6):2381-2392. doi: 10.1021/jacsau.4c00338. eCollection 2024 Jun 24.
7
Enhancing Endosomal Escape and Gene Regulation Activity for Spherical Nucleic Acids.
Small. 2024 Mar;20(11):e2306902. doi: 10.1002/smll.202306902. Epub 2023 Nov 6.
8
Transforming Hairpin-like siRNA-Based Spherical Nucleic Acids into Biocompatible Constructs.
ACS Appl Bio Mater. 2023 Sep 18;6(9):3912-3918. doi: 10.1021/acsabm.3c00574. Epub 2023 Aug 11.
9
Preparation and Biological Properties of Oligonucleotide-Functionalized Virus-like Particles.
Biomacromolecules. 2023 Jun 12;24(6):2766-2776. doi: 10.1021/acs.biomac.3c00178. Epub 2023 May 31.
10
Orthometric multicolor encoded hybridization chain reaction amplifiers for multiplexed microRNA profiling in living cells.
Chem Sci. 2023 Apr 20;14(20):5503-5509. doi: 10.1039/d3sc00563a. eCollection 2023 May 24.

本文引用的文献

2
The effector mechanism of siRNA spherical nucleic acids.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1312-1320. doi: 10.1073/pnas.1915907117. Epub 2020 Jan 3.
3
Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery.
Adv Mater. 2019 Dec;31(49):e1903637. doi: 10.1002/adma.201903637. Epub 2019 Sep 30.
4
The current state and future directions of RNAi-based therapeutics.
Nat Rev Drug Discov. 2019 Jun;18(6):421-446. doi: 10.1038/s41573-019-0017-4.
5
PLGA Spherical Nucleic Acids.
Adv Mater. 2018 May;30(22):e1707113. doi: 10.1002/adma.201707113. Epub 2018 Apr 23.
6
Using siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation in psoriasis.
J Control Release. 2017 Dec 28;268:259-268. doi: 10.1016/j.jconrel.2017.10.034. Epub 2017 Oct 23.
7
siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown.
Proc Natl Acad Sci U S A. 2015 May 5;112(18):5573-8. doi: 10.1073/pnas.1505951112. Epub 2015 Apr 20.
8
What controls the hybridization thermodynamics of spherical nucleic acids?
J Am Chem Soc. 2015 Mar 18;137(10):3486-9. doi: 10.1021/jacs.5b00670. Epub 2015 Mar 4.
9
Liposomal spherical nucleic acids.
J Am Chem Soc. 2014 Jul 16;136(28):9866-9. doi: 10.1021/ja504845f. Epub 2014 Jul 1.
10
Probing the inherent stability of siRNA immobilized on nanoparticle constructs.
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9739-44. doi: 10.1073/pnas.1409431111. Epub 2014 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验