Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
ACS Appl Bio Mater. 2023 Sep 18;6(9):3912-3918. doi: 10.1021/acsabm.3c00574. Epub 2023 Aug 11.
The design and synthesis of hairpin-like small interfering RNA spherical nucleic acids (siRNA-SNAs) based upon biocompatible liposome nanoparticle cores are described. The constructs were characterized by gel electrophoresis, dynamic light scattering, and OliGreen-based oligonucleotide quantification. These siRNA-SNA nanoconstructs enter cells 20-times more efficiently than linear siRNA in as little as 4 h, while exhibiting a 4-fold reduction in cytotoxicity compared with conventional siRNA-SNAs composed of gold nanoparticle cores. Importantly, these siRNA-SNA constructs effectively inhibit angiogenesis by silencing vascular endothelial growth factor, a key mediator of angiogenesis in a multitude of diseases, in human umbilical vein endothelial cells. This work shows how hairpin architectures can be chemically incorporated into biocompatible SNAs in a way that retains advantageous SNA properties and maximizes gene regulation capabilities.
基于生物相容性脂质体纳米颗粒核心,设计并合成了发夹状小干扰 RNA 球形核酸(siRNA-SNAs)。通过凝胶电泳、动态光散射和 OliGreen 寡核苷酸定量对这些构建体进行了表征。这些 siRNA-SNA 纳米结构在短短 4 小时内比线性 siRNA 进入细胞的效率高 20 倍,而与由金纳米颗粒核心组成的传统 siRNA-SNAs 相比,细胞毒性降低了 4 倍。重要的是,这些 siRNA-SNA 构建体通过沉默血管内皮生长因子(血管生成的关键介质)有效抑制了人脐静脉内皮细胞中的血管生成。这项工作表明,发夹结构可以通过化学方式并入生物相容性 SNAs 中,从而保留有利的 SNA 特性并最大限度地提高基因调控能力。