Suppr超能文献

基于小干扰RNA的球形核酸通过敲低神经节苷脂GM3合酶逆转糖尿病小鼠受损的伤口愈合。

siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown.

作者信息

Randeria Pratik S, Seeger Mark A, Wang Xiao-Qi, Wilson Heather, Shipp Desmond, Mirkin Chad A, Paller Amy S

机构信息

Departments of Biomedical Engineering and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208; and.

Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611.

出版信息

Proc Natl Acad Sci U S A. 2015 May 5;112(18):5573-8. doi: 10.1073/pnas.1505951112. Epub 2015 Apr 20.

Abstract

Spherical nucleic acid (SNA) gold nanoparticle conjugates (13-nm-diameter gold cores functionalized with densely packed and highly oriented nucleic acids) dispersed in Aquaphor have been shown to penetrate the epidermal barrier of both intact mouse and human skin, enter keratinocytes, and efficiently down-regulate gene targets. ganglioside-monosialic acid 3 synthase (GM3S) is a known target that is overexpressed in diabetic mice and responsible for causing insulin resistance and impeding wound healing. GM3S SNAs increase keratinocyte migration and proliferation as well as insulin and insulin-like growth factor-1 (IGF1) receptor activation under both normo- and hyperglycemic conditions. The topical application of GM3S SNAs (50 nM) to splinted 6-mm-diameter full-thickness wounds in diet-induced obese diabetic mice decreases local GM3S expression by >80% at the wound edge through an siRNA pathway and fully heals wounds clinically and histologically within 12 d, whereas control-treated wounds are only 50% closed. Granulation tissue area, vascularity, and IGF1 and EGF receptor phosphorylation are increased in GM3S SNA-treated wounds. These data capitalize on the unique ability of SNAs to naturally penetrate the skin and enter keratinocytes without the need for transfection agents. Moreover, the data further validate GM3 as a mediator of the delayed wound healing in type 2 diabetes and support regional GM3 depletion as a promising therapeutic direction.

摘要

分散在凡士林(Aquaphor)中的球形核酸(SNA)金纳米颗粒偶联物(直径13纳米的金核,表面密集排列且高度定向地功能化有核酸)已被证明能穿透完整小鼠和人类皮肤的表皮屏障,进入角质形成细胞,并有效下调基因靶点。神经节苷脂单唾液酸3合酶(GM3S)是一个已知靶点,在糖尿病小鼠中过度表达,导致胰岛素抵抗并阻碍伤口愈合。GM3S SNA在正常血糖和高血糖条件下均能增加角质形成细胞的迁移和增殖,以及胰岛素和胰岛素样生长因子-1(IGF1)受体的激活。在饮食诱导的肥胖糖尿病小鼠中,将GM3S SNA(50 nM)局部应用于直径6毫米的全层夹板伤口,通过小干扰RNA(siRNA)途径使伤口边缘的局部GM3S表达降低>80%,并在12天内实现临床和组织学上的伤口完全愈合,而对照处理的伤口仅愈合50%。GM3S SNA处理的伤口中肉芽组织面积、血管生成以及IGF1和表皮生长因子(EGF)受体磷酸化均增加。这些数据利用了SNA独特的天然穿透皮肤并进入角质形成细胞的能力,而无需转染试剂。此外,这些数据进一步验证了GM3作为2型糖尿病伤口愈合延迟的介质,并支持局部GM3消耗作为一个有前景的治疗方向。

相似文献

1
siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown.
Proc Natl Acad Sci U S A. 2015 May 5;112(18):5573-8. doi: 10.1073/pnas.1505951112. Epub 2015 Apr 20.
2
Ganglioside GM3 depletion reverses impaired wound healing in diabetic mice by activating IGF-1 and insulin receptors.
J Invest Dermatol. 2014 May;134(5):1446-1455. doi: 10.1038/jid.2013.532. Epub 2013 Dec 10.
3
Ganglioside GM3 Mediates Glucose-Induced Suppression of IGF-1 Receptor-Rac1 Activation to Inhibit Keratinocyte Motility.
J Invest Dermatol. 2017 Feb;137(2):440-448. doi: 10.1016/j.jid.2016.09.028. Epub 2016 Oct 8.
5
Gangliosides in Diabetic Wound Healing.
Prog Mol Biol Transl Sci. 2018;156:229-239. doi: 10.1016/bs.pmbts.2017.12.006. Epub 2018 Mar 17.
6
Control of homeostatic and pathogenic balance in adipose tissue by ganglioside GM3.
Glycobiology. 2015 Mar;25(3):303-18. doi: 10.1093/glycob/cwu112. Epub 2014 Oct 9.
7
Assay Development and Screening for the Identification of Ganglioside GM3 Synthase Inhibitors.
Biochemistry. 2020 Mar 31;59(12):1242-1251. doi: 10.1021/acs.biochem.0c00055. Epub 2020 Mar 20.
8
Deficient ganglioside synthesis restores responsiveness to leptin and melanocortin signaling in obese KKAy mice.
J Lipid Res. 2018 Aug;59(8):1472-1481. doi: 10.1194/jlr.M085753. Epub 2018 Jun 7.
9
Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade.
Clin Sci (Lond). 2016 Jan;130(1):45-56. doi: 10.1042/CS20150295. Epub 2015 Oct 6.
10
Ganglioside depletion and EGF responses of human GM3 synthase-deficient fibroblasts.
Glycobiology. 2008 Aug;18(8):593-601. doi: 10.1093/glycob/cwn039. Epub 2008 May 14.

引用本文的文献

2
In Vivo Interactions of Nucleic Acid Nanostructures With Cells.
Adv Mater. 2025 Jan;37(2):e2314232. doi: 10.1002/adma.202314232. Epub 2024 Sep 12.
3
Recent advances in gene delivery nanoplatforms based on spherical nucleic acids.
J Nanobiotechnology. 2024 Jul 1;22(1):386. doi: 10.1186/s12951-024-02648-5.
4
Small interfering RNA (siRNA) as a potential gene silencing strategy for diabetes and associated complications: challenges and future perspectives.
J Diabetes Metab Disord. 2024 Mar 25;23(1):365-383. doi: 10.1007/s40200-024-01405-7. eCollection 2024 Jun.
5
Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review.
Int J Mol Sci. 2023 Nov 24;24(23):16719. doi: 10.3390/ijms242316719.
7
Enhancing Endosomal Escape and Gene Regulation Activity for Spherical Nucleic Acids.
Small. 2024 Mar;20(11):e2306902. doi: 10.1002/smll.202306902. Epub 2023 Nov 6.
8
Functional nucleic acids for the treatment of diabetic complications.
Nanoscale Adv. 2023 Aug 28;5(20):5426-5434. doi: 10.1039/d3na00327b. eCollection 2023 Oct 10.
9
Transforming Hairpin-like siRNA-Based Spherical Nucleic Acids into Biocompatible Constructs.
ACS Appl Bio Mater. 2023 Sep 18;6(9):3912-3918. doi: 10.1021/acsabm.3c00574. Epub 2023 Aug 11.
10

本文引用的文献

1
Advances in skin grafting and treatment of cutaneous wounds.
Science. 2014 Nov 21;346(6212):941-5. doi: 10.1126/science.1253836.
2
Topical delivery of siRNA into skin using SPACE-peptide carriers.
J Control Release. 2014 Apr 10;179:33-41. doi: 10.1016/j.jconrel.2014.01.006. Epub 2014 Jan 13.
3
In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing.
J Am Coll Cardiol. 2014 Apr 22;63(15):1556-66. doi: 10.1016/j.jacc.2013.11.023. Epub 2013 Dec 18.
4
Ganglioside GM3 depletion reverses impaired wound healing in diabetic mice by activating IGF-1 and insulin receptors.
J Invest Dermatol. 2014 May;134(5):1446-1455. doi: 10.1038/jid.2013.532. Epub 2013 Dec 10.
5
Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma.
Sci Transl Med. 2013 Oct 30;5(209):209ra152. doi: 10.1126/scitranslmed.3006839.
6
Wnt/β-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation.
J Invest Dermatol. 2013 Dec;133(12):2753-2762. doi: 10.1038/jid.2013.235. Epub 2013 May 23.
7
Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7625-30. doi: 10.1073/pnas.1305804110. Epub 2013 Apr 23.
8
Delivery systems and local administration routes for therapeutic siRNA.
Pharm Res. 2013 Apr;30(4):915-31. doi: 10.1007/s11095-013-0971-1. Epub 2013 Jan 24.
9
Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):11975-80. doi: 10.1073/pnas.1118425109. Epub 2012 Jul 6.
10
A simple, noninvasive and efficient method for transdermal delivery of siRNA.
Arch Dermatol Res. 2012 Mar;304(2):139-44. doi: 10.1007/s00403-011-1181-5. Epub 2011 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验